summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rw-r--r--problem.tex3
1 files changed, 2 insertions, 1 deletions
diff --git a/problem.tex b/problem.tex
index 423e6fa..49a861c 100644
--- a/problem.tex
+++ b/problem.tex
@@ -8,11 +8,12 @@ More precisely, putting cost considerations aside, suppose that an experimenter
\end{align}
where $\beta$ a vector in $\reals^d$, commonly referred to as the \emph{model}, and $\varepsilon_i$ (the \emph{measurement noise}) are independent, normally distributed random variables with zero mean and variance $\sigma^2$.
-The purpose of these experiments is to allow the experimenter to estimate the model $\beta$. In particular, assuming gaussian noise, the maximum likelihood estimator of $\beta$ is the \emph{least squares} estimator: for $X_S=[x_i]_{i\in S}\in \reals^{|S|\times d}$ the matrix of experiment features and
+The purpose of these experiments is to allow the experimenter to estimate the model $\beta$. In particular, assuming Gaussian noise, the maximum likelihood estimator of $\beta$ is the \emph{least squares} estimator: for $X_S=[x_i]_{i\in S}\in \reals^{|S|\times d}$ the matrix of experiment features and
$y_S=[y_i]_{i\in S}\in\reals^{|S|}$ the observed measurements,
\begin{align} \hat{\beta} &=\max_{\beta\in\reals^d}\prob(y_S;\beta) =\argmin_{\beta\in\reals^d } \sum_{i\in S}(\T{\beta}x_i-y_i)^2 \nonumber\\
& = (\T{X_S}X_S)^{-1}X_S^Ty_S \label{leastsquares}\end{align}
%The estimator $\hat{\beta}$ is unbiased, \emph{i.e.}, $\expt{\hat{\beta}} = \beta$ (where the expectation is over the noise variables $\varepsilon_i$). Furthermore, $\hat{\beta}$ is a multidimensional normal random variable with mean $\beta$ and covariance matrix $(X_S\T{X_S})^{-1}$.
+
Note that the estimator $\hat{\beta}$ is a linear map of $y_S$; as $y_S$ is a multidimensional normal r.v., so is $\hat{\beta}$ (the randomness coming from the noise terms $\varepsilon_i$). In particular, $\hat{\beta}$ has mean $\beta$ (\emph{i.e.}, it is an \emph{unbianced estimator}) and covariance $(\T{X_S}X_S)^{-1}$.
Let $V:2^\mathcal{N}\to\reals$ be a value function, quantifying how informative a set of experiments $S$ is in estimating $\beta$. The standard optimal experimental design problem amounts to finding a set $S$ that maximizes $V(S)$ subject to the constraint $|S|\leq k$.