summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rw-r--r--appendix.tex43
-rw-r--r--approximation.tex9
-rw-r--r--definitions.tex1
-rw-r--r--main.tex2
4 files changed, 31 insertions, 24 deletions
diff --git a/appendix.tex b/appendix.tex
index bf163b4..a162a4f 100644
--- a/appendix.tex
+++ b/appendix.tex
@@ -253,14 +253,17 @@ Together, \eqref{eq:e1} and \eqref{eq:e2} imply the proposition.\qed
%For any $\varepsilon>0$, the barrier method computes an $\varepsilon$-accurate
%approximation of $L^*_c$ in time $O(poly(n,d,\log\log\varepsilon^{-1})$.
%\end{lemma}
-\note{THIBAUT: ARE THE COSTS BELOW DIVIDED BY B? CAN YOU EITHER RENAME THEM OR CARRY THE B AROUND AS APPROPRIATE?}
-
We proceed by showing that the optimal value of \eqref{eq:perturbed-primal} is close to the
optimal value of \eqref{eq:primal} (Lemma~\ref{lemma:proximity}) while being
well-behaved with respect to changes of the cost
(Lemma~\ref{lemma:monotonicity}). These lemmas together imply
Proposition~\ref{prop:monotonicity}.
+Note that the choice of $\alpha$ given in Algorithm~\ref{alg:monotone} implies
+that $\alpha<\frac{1}{n}$. This in turn implies that the feasible set
+$\mathcal{D}_{c, \alpha}$ of \eqref{eq:perturbed-primal} is non-empty: it
+contains the strictly feasible point $\lambda=(\frac{1}{n},\ldots,\frac{1}{n})$.
+
\begin{lemma}\label{lemma:derivative-bounds}
Let $\partial_i L(\lambda)$ denote the $i$-th derivative of $L$, for $i\in\{1,\ldots, n\}$, then:
\begin{displaymath}
@@ -312,7 +315,7 @@ Let us introduce the Lagrangian of problem \eqref{eq:perturbed-primal}:
\begin{displaymath}
\mathcal{L}_{c, \alpha}(\lambda, \mu, \nu, \xi) \defeq L(\lambda)
- + \T{\mu}(\lambda-\alpha\mathbf{1}) + \T{\nu}(\mathbf{1}-\lambda) + \xi(1-\T{c}\lambda)
+ + \T{\mu}(\lambda-\alpha\mathbf{1}) + \T{\nu}(\mathbf{1}-\lambda) + \xi(B-\T{c}\lambda)
\end{displaymath}
so that:
\begin{displaymath}
@@ -371,23 +374,23 @@ In particular, $|L^*_c - L^*_{c,\alpha}| \leq \alpha n^2$.
Let us first assume that $|M| = 0$, then $\T{\mathbf{1}}\mu^*=0$ and the lemma follows.
We will now assume that $|M|\geq 1$. In this case $\T{c}\lambda^*
- = 1$, otherwise we could increase the coordinates of $\lambda^*$ in $M$,
+ = B$, otherwise we could increase the coordinates of $\lambda^*$ in $M$,
which would increase the value of the objective function and contradict the
optimality of $\lambda^*$. Note also, that $|M|\leq n-1$, otherwise, since
- $\alpha< \frac{1}{n}$, we would have $\T{c}\lambda^*\ < 1$, which again
+ $\alpha< \frac{1}{n}$, we would have $\T{c}\lambda^*\ < B$, which again
contradicts the optimality of $\lambda^*$. Let us write:
\begin{displaymath}
- 1 = \T{c}\lambda^* = \alpha\sum_{i\in M}c_i + \sum_{i\in \bar{M}}\lambda_i^*c_i
- \leq \alpha |M| + (n-|M|)\max_{i\in \bar{M}} c_i
+ B = \T{c}\lambda^* = \alpha\sum_{i\in M}c_i + \sum_{i\in \bar{M}}\lambda_i^*c_i
+ \leq \alpha |M|B + (n-|M|)\max_{i\in \bar{M}} c_i
\end{displaymath}
That is:
\begin{equation}\label{local-2}
- \max_{i\in\bar{M}} c_i \geq \frac{1 - |M|\alpha}{n-|M|}> \frac{1}{n}
+ \max_{i\in\bar{M}} c_i \geq \frac{B - B|M|\alpha}{n-|M|}> \frac{B}{n}
\end{equation}
where the last inequality uses again that $\alpha<\frac{1}{n}$. From the
KKT conditions, we see that for $i\in M$, $\nu_i^* = 0$ and:
\begin{equation}\label{local-3}
- \mu_i^* = \xi^*c_i - \partial_i L(\lambda^*)\leq \xi^*c_i\leq \xi^*
+ \mu_i^* = \xi^*c_i - \partial_i L(\lambda^*)\leq \xi^*c_i\leq \xi^*B
\end{equation}
since $\partial_i L(\lambda^*)\geq 0$ and $c_i\leq 1$.
@@ -400,7 +403,7 @@ In particular, $|L^*_c - L^*_{c,\alpha}| \leq \alpha n^2$.
Combining \eqref{local-2}, \eqref{local-3} and \eqref{local-4}, we get that:
\begin{displaymath}
- \sum_{i\in M}\mu_i^* \leq |M|\xi^* \leq n\xi^*\leq \frac{n}{\max_{i\in\bar{M}} c_i} \leq n^2
+ \sum_{i\in M}\mu_i^* \leq |M|\xi^*B \leq n\xi^*B\leq \frac{nB}{\max_{i\in\bar{M}} c_i} \leq n^2
\end{displaymath}
This implies that:
@@ -413,7 +416,7 @@ In particular, $|L^*_c - L^*_{c,\alpha}| \leq \alpha n^2$.
\begin{lemma}\label{lemma:monotonicity}
If $c'$ = $(c_i', c_{-i})$, with $c_i'\leq c_i - \delta$, we have:
\begin{displaymath}
- L^*_{c',\alpha} \geq L^*_{c,\alpha} + \frac{\alpha\delta b}{2^n}
+ L^*_{c',\alpha} \geq L^*_{c,\alpha} + \frac{\alpha\delta b}{2^nB}
\end{displaymath}
\end{lemma}
@@ -437,7 +440,9 @@ In particular, $|L^*_c - L^*_{c,\alpha}| \leq \alpha n^2$.
\begin{displaymath}
\xi^* = \inf_{i:\lambda^{'*}_i>\alpha} \frac{\T{x_i}S(\lambda^{'*})^{-1}x_i}{c_i'}
\end{displaymath}
- with $\lambda^{'*}$ optimal for $(P_{c', \alpha})$. Since $c_i'\leq 1$, using Lemma~\ref{lemma:derivative-bounds}, we get that $\xi^*\geq \frac{b}{2^n}$, which concludes the proof.
+ with $\lambda^{'*}$ optimal for $(P_{c', \alpha})$. Since $c_i'\leq B$,
+ using Lemma~\ref{lemma:derivative-bounds}, we get that $\xi^*\geq
+ \frac{b}{2^nB}$, which concludes the proof.
\end{proof}
%\subsection*{End of the proof of Proposition~\ref{prop:monotonicity}}
@@ -448,15 +453,15 @@ Algorithm~\ref{alg:monotone}.
\item using Lemma~\ref{lemma:proximity}:
\begin{displaymath}
|\hat{L}^*_{c,\alpha} - L^*_c| \leq |\hat{L}^*_{c,\alpha} - L^*_{c,\alpha}| + |L^*_{c,\alpha} - L^*_c|
- \leq \alpha\delta + \alpha n^2 = \varepsilon
+ \leq \frac{\alpha\delta}{B} + \alpha n^2 = \varepsilon
\end{displaymath}
which proves the $\varepsilon$-accuracy.
\item for the $\delta$-decreasingness, let $c' = (c_i', c_{-i})$ with $c_i'\leq
c_i-\delta$, then:
\begin{displaymath}
- \hat{L}^*_{c',\alpha} \geq L^*_{c',\alpha} - \frac{\alpha\delta b}{2^{n+1}}
- \geq L^*_{c,\alpha} + \frac{\alpha\delta b}{2^{n+1}}
+ \hat{L}^*_{c',\alpha} \geq L^*_{c',\alpha} - \frac{\alpha\delta b}{2^{n+1}B}
+ \geq L^*_{c,\alpha} + \frac{\alpha\delta b}{2^{n+1}B}
\geq \hat{L}^*_{c,\alpha}
\end{displaymath}
where the first and last inequalities follow from the accuracy of the approximation, and
@@ -464,12 +469,12 @@ the inner inequality follows from Lemma~\ref{lemma:monotonicity}.
\item the accuracy of the approximation $\hat{L}^*_{c,\alpha}$ is:
\begin{displaymath}
- A\defeq\frac{\varepsilon\delta b}{2^{n+1}(\delta + n^2)}
+ A\defeq\frac{\varepsilon\delta b}{2^{n+1}(\delta + n^2B)}
\end{displaymath}
Note that:
\begin{displaymath}
- \log\log A^{-1} = O\bigg(\log\log\frac{1}{\varepsilon\delta b} + \log n\bigg)
+ \log\log A^{-1} = O\bigg(\log\log\frac{B}{\varepsilon\delta b} + \log n\bigg)
\end{displaymath}
Using Lemma~\ref{lemma:barrier} concludes the proof of the running time.\qed
\end{enumerate}
@@ -541,7 +546,7 @@ The complexity of the mechanism is given by the following lemma.
\begin{lemma}[Complexity]\label{lemma:complexity}
For any $\varepsilon > 0$ and any $\delta>0$, the complexity of the mechanism is
- $O\big(poly(n, d, \log\log\frac{1}{b\varepsilon\delta})\big)$
+ $O\big(poly(n, d, \log\log\frac{B}{b\varepsilon\delta})\big)$
\end{lemma}
\begin{proof}
@@ -551,7 +556,7 @@ The complexity of the mechanism is given by the following lemma.
By Proposition~\ref{prop:monotonicity}, line 3 of Algorithm~\ref{mechanism}
can be computed in time
- $O(\text{poly}(n, d, \log\log \varepsilon^{-1}))$. Hence the allocation
+ $O(\text{poly}(n, d, \log\log \frac{B}{b\varepsilon\delta}))$. Hence the allocation
function's complexity is as stated.
%Payments can be easily computed in time $O(\text{poly}(n, d))$ as in prior work.
\junk{
diff --git a/approximation.tex b/approximation.tex
index 1a4b44b..c306a75 100644
--- a/approximation.tex
+++ b/approximation.tex
@@ -183,9 +183,10 @@ Note that $\dom_c=\dom_{c,0}.$ Consider the following perturbation of the concav
\begin{algorithm}[t]
\caption{}\label{alg:monotone}
\begin{algorithmic}[1]
- \Require{ $B\in \reals_+$,$c\in[0,B]^n$, $\delta\in (0,1]$, $\epsilon\in (0,1]$ }
- \State $\alpha \gets \min\left(\varepsilon B^{-1}(\delta+n^2)^{-1},\frac{1}{nB}\right) $
- \State Use the barrier method to solve \eqref{eq:perturbed-primal} with accuracy $\varepsilon'=\frac{1}{2^{n+1}}\alpha\delta b$; denote the output by $\hat{L}^*_{c,\alpha}$
+ \Require{ $B\in \reals_+$, $c\in[0,B]^n$, $\delta\in (0,1]$, $\epsilon\in (0,1]$ }
+ \State $\alpha \gets \varepsilon (\delta/B+n^2)^{-1}$
+ \State Use the barrier method to solve \eqref{eq:perturbed-primal} with
+ accuracy $\varepsilon'=\frac{1}{2^{n+1}B}\alpha\delta b$; denote the output by $\hat{L}^*_{c,\alpha}$
\State \textbf{return} $\hat{L}^*_{c,\alpha}$
\end{algorithmic}
\end{algorithm}
@@ -195,7 +196,7 @@ Our construction of a $\delta$-decreasing, $\varepsilon$-accurate approximator o
For any $\delta\in(0,1]$ and any $\varepsilon\in(0,1]$,
Algorithm~\ref{alg:monotone} computes a $\delta$-decreasing,
$\varepsilon$-accurate approximation of $L^*_c$. The running time of the
- algorithm is $O\big(poly(n, d, \log\log\frac{1}{b\varepsilon\delta})\big)$. \note{THIBAUT, IS THERE A BUDGET $B$ IN THE NUMERATOR OF THE LOGLOG TERM?}
+ algorithm is $O\big(poly(n, d, \log\log\frac{B}{b\varepsilon\delta})\big)$.
\end{proposition}
We note that the the execution of the barrier method on the restricted set $\dom_{c,\alpha}$ is necessary. The algorithm's output when executed over the entire domain may not necessarily be $\delta$-decreasing, even when the approximation accuracy is small. This is because costs become saturated when the optimal $\lambda\in \dom_c$ lies at the boundary: increasing them has no effect on the objective. Forcing the optimization to happen ``off'' the boundary ensures that this does not occur, while taking $\alpha$ to be small ensures that this perturbation does not cost much in terms of approximation accuracy.
diff --git a/definitions.tex b/definitions.tex
index a719fce..7d30dcd 100644
--- a/definitions.tex
+++ b/definitions.tex
@@ -19,6 +19,7 @@
\newcommand{\tr}[1]{#1^*}
\newcommand{\ip}[2]{\langle #1, #2 \rangle}
\newcommand{\mse}{\mathop{\mathrm{MSE}}}
+\renewcommand{\epsilon}{\varepsilon}
\DeclareMathOperator{\trace}{tr}
\DeclareMathOperator*{\argmax}{arg\,max}
\DeclareMathOperator*{\argmin}{arg\,min}
diff --git a/main.tex b/main.tex
index 7f40d90..a751621 100644
--- a/main.tex
+++ b/main.tex
@@ -106,7 +106,7 @@ We can now state our main result, which is proved in Appendix~\ref{sec:proofofma
along with threshold payments, is $\delta$-truthful, individually rational
and budget feasible. Furthermore, there exists an absolute constant $C$
such that, for any $\varepsilon>0$, the mechanism runs in time
- $O\big(poly(n, d, \log\log\frac{1}{b\varepsilon\delta})\big)$
+ $O\big(poly(n, d, \log\log\frac{B}{b\varepsilon\delta})\big)$
and returns
a set $S^*$ such that:
% \begin{align*}