summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rw-r--r--main.tex86
1 files changed, 36 insertions, 50 deletions
diff --git a/main.tex b/main.tex
index bd57295..324c2f8 100644
--- a/main.tex
+++ b/main.tex
@@ -46,7 +46,7 @@ maximum value:
\end{displaymath}
then the following inequality holds:
\begin{displaymath}
- OPT(V,\mathcal{N},B) \leq \frac{5e}{e-1}\max\big\{ V(S_G), V(i^*)\big\}
+OPT(V,\mathcal{N},B) \leq \frac{e}{e-1}\big( 3 V(S_G) + 2 V(i^*)\big)
\end{displaymath}
\end{lemma}
@@ -72,7 +72,7 @@ Here, we will use the following relaxation of the value function \eqref{vs}.
Let us define the function $L_\mathcal{N}$:
\begin{displaymath}
\forall\lambda\in[0,1]^{|\mathcal{N}|}\,\quad L_{\mathcal{N}}(\lambda) \defeq
- \log\det\left(I_d + \mu\sum_{i\in\mathcal{N}} \lambda_i x_i \T{x_i}\right)
+ \log\det\left(I_d + \sum_{i\in\mathcal{N}} \lambda_i x_i \T{x_i}\right)
\end{displaymath}
Our mechanism for \EDP{} is presented in Algorithm~\ref{mechanism}.
@@ -114,20 +114,12 @@ We can now state the main result of this section:
\begin{theorem}\label{thm:main}
The mechanism described in Algorithm~\ref{mechanism} is truthful,
individually rational and budget feasible. Furthermore, choosing:
- \begin{multline*}
- C = C^* = \frac{5e-1 + C_\mu(2e+1)}{2C_\mu(e-1)}\\
- + \frac{\sqrt{C_\mu^2(1+2e)^2
- + 2C_\mu(14e^2+5e+1) + (1-5e)^2}}{2C_\mu(e-1)}
- \end{multline*}
+ \begin{displaymath}
+ C = C^* = \frac{12e-1 + \sqrt{160e^2-48e + 9}}{2(e-1)}
+ \end{displaymath}
we get an approximation ratio of:
- \begin{multline*}
- 1 + C^* = \frac{5e-1 + C_\mu(4e-1)}{2C_\mu(e-1)}\\
- + \frac{\sqrt{C_\mu^2(1+2e)^2
- + 2C_\mu(14e^2+5e+1) + (1-5e)^2}}{2C_\mu(e-1)}
- \end{multline*}
- where:
\begin{displaymath}
- C_\mu = \frac{\log(1+\mu)}{2\mu}
+ 1 + C^* = \frac{14e-3 + \sqrt{160e^2-48e + 9}}{2(e-1)}\simeq 18.68
\end{displaymath}
\end{theorem}
@@ -221,8 +213,8 @@ Hence, the total payment is bounded by:
\begin{lemma}\label{lemma:approx}
Let $S^*$ be the set allocated by the mechanism. Let us write:
\begin{displaymath}
- C_{\textrm{max}} = \max\left(1+C,\frac{e}{e-1}\left( 3 + \frac{12e}{C\cdot
- C_\mu(e-1) -5e +1}\right)\right)
+ C_{\textrm{max}} = \max\left(1+C,\frac{3e}{e-1}\left( 1 + \frac{8e}{C
+ (e-1) -10e +2}\right)\right)
\end{displaymath}
Then:
@@ -232,7 +224,6 @@ Hence, the total payment is bounded by:
\end{displaymath}
\end{lemma}
-
\begin{proof}
If the condition on line 3 of the algorithm holds, then:
@@ -254,22 +245,22 @@ Hence, the total payment is bounded by:
If the condition of the algorithm does not hold, by applying lemmas
\ref{lemma:relaxation} and \ref{lemma:greedy-bound}:
\begin{align*}
- V(i^*) & \leq \frac{1}{C}L(x^*) \leq \frac{1}{C\cdot C_\mu}
- \big(2 OPT(V,\mathcal{N}, B) + V(i^*)\big)\\
- & \leq \frac{1}{C\cdot C_\mu}\left(\frac{2e}{e-1}\big(3 V(S_G)
+ V(i^*) & \leq \frac{1}{C}L(x^*) \leq \frac{1}{C}
+ \big(4 OPT(V,\mathcal{N}, B) + 2 V(i^*)\big)\\
+ & \leq \frac{1}{C}\left(\frac{4e}{e-1}\big(3 V(S_G)
+ 2 V(i^*)\big)
+ V(i^*)\right)
\end{align*}
Thus:
\begin{align*}
- V(i^*) \leq \frac{6e}{C\cdot C_\mu(e-1)- 5e + 1} V(S_G)
+ V(i^*) \leq \frac{12e}{C(e-1)- 10e + 2} V(S_G)
\end{align*}
Finally, using again lemma~\ref{lemma:greedy-bound}, we get:
\begin{displaymath}
- OPT(V, \mathcal{N}, B) \leq \frac{e}{e-1}\left( 3 + \frac{12e}{C\cdot
- C_\mu(e-1) -5e +1}\right) V(S_G)
+ OPT(V, \mathcal{N}, B) \leq \frac{3e}{e-1}\left( 1 + \frac{8e}{C
+ (e-1) -10e +2}\right) V(S_G)\qed
\end{displaymath}
\end{proof}
@@ -280,7 +271,7 @@ The optimal value for $C$ is:
This equation has two solutions. Only one of those is such that:
\begin{displaymath}
- C\cdot C_\mu(e-1) -5e +1 \geq 0
+ C(e-1) -10e +2 \geq 0
\end{displaymath}
which is needed in the proof of the previous lemma. Computing this solution,
gives the result of the theorem.
@@ -336,7 +327,7 @@ probabilities $P_\mathcal{N}$:
& = \log\det \mathbb{E}_{S\sim P_\mathcal{N}^\lambda}\big[A(S)\big]\\
& = \log\det\left(\sum_{S\subseteq N}
P_\mathcal{N}^\lambda(S)A(S)\right)\\
- & = \log\det\left(I_d + \mu\sum_{i\in\mathcal{N}}
+ & = \log\det\left(I_d + \sum_{i\in\mathcal{N}}
\lambda_ix_i\T{x_i}\right)\\
& \defeq \log\det \tilde{A}(\lambda)
\end{align*}
@@ -365,7 +356,7 @@ We will also use the \emph{multi-linear extension}:
\end{proof}
It has been observed already (see for example \cite{dughmi}) that the
-multilinear extension presents the cross-convexity property: it is convex along
+multi-linear extension presents the cross-convexity property: it is convex along
any direction $e_i-e_j$ where $e_i$ and $e_j$ are two elements of the standard
basis. This property allows to trade between two fractional components of
a point without diminishing the value of the relaxation. The following lemma
@@ -432,7 +423,7 @@ the points remain feasible during the trade.
The following inequality holds:
\begin{displaymath}
\forall\lambda\in[0,1]^{|\mathcal{N}|},\;
- \frac{\log\big(1+\mu\big)}{2\mu}
+ \frac{1}{2}
\,L_\mathcal{N}(\lambda)\leq
F_\mathcal{N}(\lambda)\leq L_{\mathcal{N}}(\lambda)
\end{displaymath}
@@ -440,12 +431,8 @@ the points remain feasible during the trade.
\begin{proof}
- We will prove that:
- \begin{displaymath}
- \frac{\log\big(1+\mu\big)}{2\mu}
- \end{displaymath}
- is a lower bound of the ratio $\partial_i F_\mathcal{N}(\lambda)/\partial_i
- L_\mathcal{N}(\lambda)$.
+ We will prove that $\frac{1}{2}$ is a lower bound of the ratio $\partial_i
+ F_\mathcal{N}(\lambda)/\partial_i L_\mathcal{N}(\lambda)$.
This will be enough to conclude, by observing that:
\begin{displaymath}
@@ -455,7 +442,7 @@ the points remain feasible during the trade.
{\sum_{i\in\mathcal{N}}\lambda_i\partial_i L_\mathcal{N}(0)}
\end{displaymath}
and that an interior critical point of the ratio
- $F_\mathcal{N}(\lambda)/L_\mathcal{N}(\lambda)$ is defined by:
+ $F_\mathcal{N}(\lambda)/L_\mathcal{N}(\lambda)$ is characterized by:
\begin{displaymath}
\frac{F_\mathcal{N}(\lambda)}{L_\mathcal{N}(\lambda)}
= \frac{\partial_i F_\mathcal{N}(\lambda)}{\partial_i
@@ -502,14 +489,14 @@ the points remain feasible during the trade.
\partial_i F_\mathcal{N}(\lambda) =
\sum_{\substack{S\subseteq\mathcal{N}\\ i\in\mathcal{N}\setminus S}}
P_{\mathcal{N}\setminus\{i\}}^\lambda(S)
- \log\Big(1 + \mu \T{x_i}A(S)^{-1}x_i\Big)
+ \log\Big(1 + \T{x_i}A(S)^{-1}x_i\Big)
\end{displaymath}
The computation of the derivative of $L_\mathcal{N}$ uses standard matrix
calculus and gives:
\begin{displaymath}
\partial_i L_\mathcal{N}(\lambda)
- = \mu \T{x_i}\tilde{A}(\lambda)^{-1}x_i
+ = \T{x_i}\tilde{A}(\lambda)^{-1}x_i
\end{displaymath}
Using the following inequalities:
@@ -526,36 +513,35 @@ the points remain feasible during the trade.
\partial_i F_\mathcal{N}(\lambda)
& \geq \sum_{\substack{S\subseteq\mathcal{N}\\ i\in\mathcal{N}\setminus S}}
P_\mathcal{N}^\lambda(S)
- \log\Big(1 + \mu \T{x_i}A(S)^{-1}x_i\Big)\\
+ \log\Big(1 + \T{x_i}A(S)^{-1}x_i\Big)\\
& \geq \frac{1}{2}
\sum_{\substack{S\subseteq\mathcal{N}\\ i\in\mathcal{N}\setminus S}}
P_\mathcal{N}^\lambda(S)
- \log\Big(1 + \mu \T{x_i}A(S)^{-1}x_i\Big)\\
+ \log\Big(1 + \T{x_i}A(S)^{-1}x_i\Big)\\
&\hspace{-3.5em}+\frac{1}{2}
\sum_{\substack{S\subseteq\mathcal{N}\\ i\in\mathcal{N}\setminus S}}
P_\mathcal{N}^\lambda(S\cup\{i\})
- \log\Big(1 + \mu \T{x_i}A(S\cup\{i\})^{-1}x_i\Big)\\
+ \log\Big(1 + \T{x_i}A(S\cup\{i\})^{-1}x_i\Big)\\
&\geq \frac{1}{2}
\sum_{S\subseteq\mathcal{N}}
P_\mathcal{N}^\lambda(S)
- \log\Big(1 + \mu \T{x_i}A(S)^{-1}x_i\Big)\\
+ \log\Big(1 + \T{x_i}A(S)^{-1}x_i\Big)\\
\end{align*}
Using that $A(S)\geq I_d$ we get that:
\begin{displaymath}
- \mu \T{x_i}A(S)^{-1}x_i \leq \mu
+ \T{x_i}A(S)^{-1}x_i \leq 1
\end{displaymath}
Moreover:
\begin{displaymath}
- \forall x\leq\mu,\; \log(1+x)\geq
- \frac{\log\big(1+\mu\big)}{\mu} x
+ \forall x\leq 1,\; \log(1+x)\geq x
\end{displaymath}
Hence:
\begin{displaymath}
\partial_i F_\mathcal{N}(\lambda) \geq
- \frac{\log\big(1+\mu\big)}{2\mu}
+ \frac{1}{2}
\T{x_i}\bigg(\sum_{S\subseteq\mathcal{N}}P_\mathcal{N}^\lambda(S)A(S)^{-1}\bigg)x_i
\end{displaymath}
@@ -563,18 +549,18 @@ the points remain feasible during the trade.
positive definite matrices:
\begin{align*}
\partial_i F_\mathcal{N}(\lambda) &\geq
- \frac{\log\big(1+\mu\big)}{2\mu}
+ \frac{1}{2}
\T{x_i}\bigg(\sum_{S\subseteq\mathcal{N}}P_\mathcal{N}^\lambda(S)A(S)\bigg)^{-1}x_i\\
- & \geq \frac{\log\big(1+\mu\big)}{2\mu}
- \partial_i L_\mathcal{N}(\lambda)
+ & \geq \frac{1}{2}
+ \partial_i L_\mathcal{N}(\lambda)\qed
\end{align*}
\end{proof}
\begin{lemma}\label{lemma:relaxation}
We have:
\begin{displaymath}
- OPT(L_\mathcal{N}, B) \leq \frac{1}{C_\mu}\big(2 OPT(V,\mathcal{N},B)
- + \max_{i\in\mathcal{N}}V(i)\big)
+ OPT(L_\mathcal{N}, B) \leq 4 OPT(V,\mathcal{N},B)
+ + 2\max_{i\in\mathcal{N}}V(i)
\end{displaymath}
\end{lemma}
@@ -584,7 +570,7 @@ the points remain feasible during the trade.
and lemma~\ref{lemma:rounding} we get a feasible point $\bar{\lambda}$ with at most
one fractional component such that:
\begin{equation}\label{eq:e1}
- L_\mathcal{N}(\lambda^*) \leq \frac{1}{C_\mu}
+ L_\mathcal{N}(\lambda^*) \leq 2
F_\mathcal{N}(\bar{\lambda})
\end{equation}