summaryrefslogtreecommitdiffstats
path: root/appendix.tex
diff options
context:
space:
mode:
Diffstat (limited to 'appendix.tex')
-rw-r--r--appendix.tex669
1 files changed, 664 insertions, 5 deletions
diff --git a/appendix.tex b/appendix.tex
index 2c83e04..dd643d7 100644
--- a/appendix.tex
+++ b/appendix.tex
@@ -1,6 +1,558 @@
+\subsection{Proof of Proposition~\ref{prop:relaxation}}
+
+\begin{lemma}\label{lemma:relaxation-ratio}
+For all $\lambda\in[0,1]^{n},$
+ $ \frac{1}{2}
+ \,L(\lambda)\leq
+ F(\lambda)\leq L(\lambda)$.
+\end{lemma}
+
+\begin{proof}
+ The bound $F_{\mathcal{N}}(\lambda)\leq L_{\mathcal{N}(\lambda)}$ follows by the concavity of the $\log\det$ function.
+ To show the lower bound,
+ we first prove that $\frac{1}{2}$ is a lower bound of the ratio $\partial_i
+ F(\lambda)/\partial_i L(\lambda)$, where
+ $\partial_i\, \cdot$ denotes the partial derivative with respect to the
+ $i$-th variable.
+
+ Let us start by computing the derivatives of $F$ and
+ $L$ with respect to the $i$-th component.
+ Observe that
+ \begin{displaymath}
+ \partial_i P_\mathcal{N}^\lambda(S) = \left\{
+ \begin{aligned}
+ & P_{\mathcal{N}\setminus\{i\}}^\lambda(S\setminus\{i\})\;\textrm{if}\;
+ i\in S, \\
+ & - P_{\mathcal{N}\setminus\{i\}}^\lambda(S)\;\textrm{if}\;
+ i\in \mathcal{N}\setminus S. \\
+ \end{aligned}\right.
+ \end{displaymath}
+ Hence,
+ \begin{displaymath}
+ \partial_i F(\lambda) =
+ \sum_{\substack{S\subseteq\mathcal{N}\\ i\in S}}
+ P_{\mathcal{N}\setminus\{i\}}^\lambda(S\setminus\{i\})V(S)
+ - \sum_{\substack{S\subseteq\mathcal{N}\\ i\in \mathcal{N}\setminus S}}
+ P_{\mathcal{N}\setminus\{i\}}^\lambda(S)V(S).
+ \end{displaymath}
+ Now, using that every $S$ such that $i\in S$ can be uniquely written as
+ $S'\cup\{i\}$, we can write:
+ \begin{displaymath}
+ \partial_i F(\lambda) =
+ \sum_{\substack{S\subseteq\mathcal{N}\\ i\in\mathcal{N}\setminus S}}
+ P_{\mathcal{N}\setminus\{i\}}^\lambda(S)\big(V(S\cup\{i\})
+ - V(S)\big).
+ \end{displaymath}
+ The marginal contribution of $i$ to
+ $S$ can be written as
+\begin{align*}
+V(S\cup \{i\}) - V(S)& = \frac{1}{2}\log\det(I_d
+ + \T{X_S}X_S + x_i\T{x_i})
+ - \frac{1}{2}\log\det(I_d + \T{X_S}X_S)\\
+ & = \frac{1}{2}\log\det(I_d + x_i\T{x_i}(I_d +
+\T{X_S}X_S)^{-1})
+ = \frac{1}{2}\log(1 + \T{x_i}A(S)^{-1}x_i)
+\end{align*}
+where $A(S) \defeq I_d+ \T{X_S}X_S$, and the last equality follows from the
+Sylvester's determinant identity~\cite{sylvester}.
+% $ V(S\cup\{i\}) - V(S) = \frac{1}{2}\log\left(1 + \T{x_i} A(S)^{-1}x_i\right)$.
+Using this,
+ \begin{displaymath}
+ \partial_i F(\lambda) = \frac{1}{2}
+ \sum_{\substack{S\subseteq\mathcal{N}\\ i\in\mathcal{N}\setminus S}}
+ P_{\mathcal{N}\setminus\{i\}}^\lambda(S)
+ \log\Big(1 + \T{x_i}A(S)^{-1}x_i\Big)
+ \end{displaymath}
+ The computation of the derivative of $L$ uses standard matrix
+ calculus: writing $\tilde{A}(\lambda) = I_d+\sum_{i\in
+ \mathcal{N}}\lambda_ix_i\T{x_i}$,
+ \begin{displaymath}
+ \det \tilde{A}(\lambda + h\cdot e_i) = \det\big(\tilde{A}(\lambda)
+ + hx_i\T{x_i}\big)
+ =\det \tilde{A}(\lambda)\big(1+
+ h\T{x_i}\tilde{A}(\lambda)^{-1}x_i\big).
+ \end{displaymath}
+ Hence,
+ \begin{displaymath}
+ \log\det\tilde{A}(\lambda + h\cdot e_i)= \log\det\tilde{A}(\lambda)
+ + h\T{x_i}\tilde{A}(\lambda)^{-1}x_i + o(h),
+ \end{displaymath}
+ which implies
+ \begin{displaymath}
+ \partial_i L(\lambda)
+ =\frac{1}{2} \T{x_i}\tilde{A}(\lambda)^{-1}x_i.
+ \end{displaymath}
+
+For two symmetric matrices $A$ and $B$, we write $A\succ B$ ($A\succeq B$) if
+$A-B$ is positive definite (positive semi-definite). This order allows us to
+define the notion of a \emph{decreasing} as well as \emph{convex} matrix
+function, similarly to their real counterparts. With this definition, matrix
+inversion is decreasing and convex over symmetric positive definite
+matrices (see Example 3.48 p. 110 in \cite{boyd2004convex}).
+In particular,
+\begin{gather*}
+ \forall S\subseteq\mathcal{N},\quad A(S)^{-1} \succeq A(S\cup\{i\})^{-1}
+\end{gather*}
+as $A(S)\preceq A(S\cup\{i\})$. Observe that
+ % \begin{gather*}
+ % \forall
+$P_{\mathcal{N}\setminus\{i\}}^\lambda(S)\geq P_{\mathcal{N}\setminus\{i\}}^\lambda(S\cup\{i\})$ for all $S\subseteq\mathcal{N}\setminus\{i\}$, and
+ % ,\\
+ $P_{\mathcal{N}\setminus\{i\}}^\lambda(S) \geq P_\mathcal{N}^\lambda(S),$ for all $S\subseteq\mathcal{N}$.
+ %\end{gather*}
+ Hence,
+ \begin{align*}
+ \partial_i F(\lambda)
+ % & = \sum_{\substack{S\subseteq\mathcal{N}\\ i\in\mathcal{N}\setminus S}} P_\mathcal{N}^\lambda(S) \log\Big(1 + \T{x_i}A(S)^{-1}x_i\Big)\\
+ & \geq \frac{1}{4}
+ \sum_{\substack{S\subseteq\mathcal{N}\\ i\in\mathcal{N}\setminus S}}
+ P_{\mathcal{N}\setminus\{i\}}^\lambda(S)
+ \log\Big(1 + \T{x_i}A(S)^{-1}x_i\Big)\\
+ &\hspace{-3.5em}+\frac{1}{4}
+ \sum_{\substack{S\subseteq\mathcal{N}\\ i\in\mathcal{N}\setminus S}}
+ P_{\mathcal{N}\setminus\{i\}}^\lambda(S\cup\{i\})
+ \log\Big(1 + \T{x_i}A(S\cup\{i\})^{-1}x_i\Big)\\
+ &\geq \frac{1}{4}
+ \sum_{S\subseteq\mathcal{N}}
+ P_\mathcal{N}^\lambda(S)
+ \log\Big(1 + \T{x_i}A(S)^{-1}x_i\Big).
+ \end{align*}
+ Using that $A(S)\succeq I_d$ we get that $\T{x_i}A(S)^{-1}x_i \leq
+ \norm{x_i}_2^2 \leq 1$. Moreover, $\log(1+x)\geq x$ for all $x\leq 1$.
+ Hence,
+ \begin{displaymath}
+ \partial_i F(\lambda) \geq
+ \frac{1}{4}
+ \T{x_i}\bigg(\sum_{S\subseteq\mathcal{N}}P_\mathcal{N}^\lambda(S)A(S)^{-1}\bigg)x_i.
+ \end{displaymath}
+ Finally, using that the inverse is a matrix convex function over symmetric
+ positive definite matrices:
+ \begin{displaymath}
+ \partial_i F(\lambda) \geq
+ \frac{1}{4}
+ \T{x_i}\bigg(\sum_{S\subseteq\mathcal{N}}P_\mathcal{N}^\lambda(S)A(S)\bigg)^{-1}x_i
+ = \frac{1}{4}\T{x_i}\tilde{A}(\lambda)^{-1}x_i
+ = \frac{1}{2}
+ \partial_i L(\lambda).
+ \end{displaymath}
+
+Having bound the ratio between the partial derivatives, we now bound the ratio $F(\lambda)/L(\lambda)$ from below. Consider the following cases.
+ First, if the minimum of the ratio
+ $F(\lambda)/L(\lambda)$ is attained at a point interior to the hypercube, then it is
+ a critical point, \emph{i.e.}, $\partial_i \big(F(\lambda)/L(\lambda)\big)=0$ for all $i\in \mathcal{N}$; hence, at such a critical point:
+ \begin{equation}\label{eq:lhopital}
+ \frac{F(\lambda)}{L(\lambda)}
+ = \frac{\partial_i F(\lambda)}{\partial_i
+ L(\lambda)} \geq \frac{1}{2}.
+ \end{equation}
+ Second, if the minimum is attained as
+ $\lambda$ converges to zero in, \emph{e.g.}, the $l_2$ norm, by the Taylor approximation, one can write:
+ \begin{displaymath}
+ \frac{F(\lambda)}{L(\lambda)}
+ \sim_{\lambda\rightarrow 0}
+ \frac{\sum_{i\in \mathcal{N}}\lambda_i\partial_i F(0)}
+ {\sum_{i\in\mathcal{N}}\lambda_i\partial_i L(0)}
+ \geq \frac{1}{2},
+ \end{displaymath}
+ \emph{i.e.}, the ratio $\frac{F(\lambda)}{L(\lambda)}$ is necessarily bounded from below by 1/2 for small enough $\lambda$.
+ Finally, if the minimum is attained on a face of the hypercube $[0,1]^n$ (a face is
+ defined as a subset of the hypercube where one of the variable is fixed to
+ 0 or 1), without loss of generality, we can assume that the minimum is
+ attained on the face where the $n$-th variable has been fixed
+ to 0 or 1. Then, either the minimum is attained at a point interior to the
+ face or on a boundary of the face. In the first sub-case, relation
+ \eqref{eq:lhopital} still characterizes the minimum for $i< n$.
+ In the second sub-case, by repeating the argument again by induction, we see
+ that all is left to do is to show that the bound holds for the vertices of
+ the cube (the faces of dimension 1). The vertices are exactly the binary
+ points, for which we know that both relaxations are equal to the value
+ function $V$. Hence, the ratio is equal to 1 on the vertices.
+\end{proof}
+
+We now prove that $F$ admits the following exchange property: let
+$\lambda$ be a feasible element of $[0,1]^n$, it is possible to trade one
+fractional component of $\lambda$ for another until one of them becomes
+integral, obtaining a new element $\tilde{\lambda}$ which is both feasible and
+for which $F(\tilde{\lambda})\geq F(\lambda)$. Here, by feasibility of a point
+$\lambda$, we mean that it satisfies the budget constraint $\sum_{i=1}^n
+\lambda_i c_i \leq B$. This rounding property is referred to in the literature
+as \emph{cross-convexity} (see, \emph{e.g.}, \cite{dughmi}), or
+$\varepsilon$-convexity by \citeN{pipage}.
+
+\begin{lemma}[Rounding]\label{lemma:rounding}
+ For any feasible $\lambda\in[0,1]^{n}$, there exists a feasible
+ $\bar{\lambda}\in[0,1]^{n}$ such that at most one of its components is
+ fractional %, that is, lies in $(0,1)$ and:
+ and $F_{\mathcal{N}}(\lambda)\leq F_{\mathcal{N}}(\bar{\lambda})$.
+\end{lemma}
+
+\begin{proof}
+ We give a rounding procedure which, given a feasible $\lambda$ with at least
+ two fractional components, returns some feasible $\lambda'$ with one less fractional
+ component such that $F(\lambda) \leq F(\lambda')$.
+
+ Applying this procedure recursively yields the lemma's result.
+ Let us consider such a feasible $\lambda$. Let $i$ and $j$ be two
+ fractional components of $\lambda$ and let us define the following
+ function:
+ \begin{displaymath}
+ F_\lambda(\varepsilon) = F(\lambda_\varepsilon)
+ \quad\textrm{where} \quad
+ \lambda_\varepsilon = \lambda + \varepsilon\left(e_i-\frac{c_i}{c_j}e_j\right)
+ \end{displaymath}
+ It is easy to see that if $\lambda$ is feasible, then:
+ \begin{equation}\label{eq:convex-interval}
+ \forall\varepsilon\in\Big[\max\Big(-\lambda_i,(\lambda_j-1)\frac{c_j}{c_i}\Big), \min\Big(1-\lambda_i, \lambda_j
+ \frac{c_j}{c_i}\Big)\Big],\;
+ \lambda_\varepsilon\;\;\textrm{is feasible}
+ \end{equation}
+ Furthermore, the function $F_\lambda$ is convex; indeed:
+ \begin{align*}
+ F_\lambda(\varepsilon)
+ & = \mathbb{E}_{S'\sim P_{\mathcal{N}\setminus\{i,j\}}^\lambda(S')}\Big[
+ (\lambda_i+\varepsilon)\Big(\lambda_j-\varepsilon\frac{c_i}{c_j}\Big)V(S'\cup\{i,j\})\\
+ & + (\lambda_i+\varepsilon)\Big(1-\lambda_j+\varepsilon\frac{c_i}{c_j}\Big)V(S'\cup\{i\})
+ + (1-\lambda_i-\varepsilon)\Big(\lambda_j-\varepsilon\frac{c_i}{c_j}\Big)V(S'\cup\{j\})\\
+ & + (1-\lambda_i-\varepsilon)\Big(1-\lambda_j+\varepsilon\frac{c_i}{c_j}\Big)V(S')\Big]
+ \end{align*}
+ Thus, $F_\lambda$ is a degree 2 polynomial whose dominant coefficient is:
+ \begin{displaymath}
+ \frac{c_i}{c_j}\mathbb{E}_{S'\sim
+ P_{\mathcal{N}\setminus\{i,j\}}^\lambda(S')}\Big[
+ V(S'\cup\{i\})+V(S'\cup\{i\})\\
+ -V(S'\cup\{i,j\})-V(S')\Big]
+ \end{displaymath}
+ which is positive by submodularity of $V$. Hence, the maximum of
+ $F_\lambda$ over the interval given in \eqref{eq:convex-interval} is
+ attained at one of its limit, at which either the $i$-th or $j$-th component of
+ $\lambda_\varepsilon$ becomes integral.
+\end{proof}
+
+\subsubsection*{End of the proof of Proposition~\ref{prop:relaxation}}
+
+Let us consider a feasible point $\lambda^*\in[0,1]^{n}$ such that
+$L(\lambda^*) = L^*_c$. By applying Lemma~\ref{lemma:relaxation-ratio} and
+Lemma~\ref{lemma:rounding} we get a feasible point $\bar{\lambda}$ with at most
+one fractional component such that
+\begin{equation}\label{eq:e1}
+ L(\lambda^*) \leq 2 F(\bar{\lambda}).
+\end{equation}
+ Let $\lambda_i$ denote the fractional component of $\bar{\lambda}$ and $S$
+ denote the set whose indicator vector is $\bar{\lambda} - \lambda_i e_i$.
+ By definition of the multi-linear extension $F$:
+ \begin{displaymath}
+ F(\bar{\lambda}) = (1-\lambda_i)V(S) +\lambda_i V(S\cup\{i\}).
+ \end{displaymath}
+ By submodularity of $V$, $V(S\cup\{i\})\leq V(S) + V(\{i\})$. Hence,
+ \begin{displaymath}
+ F(\bar{\lambda}) \leq V(S) + V(i).
+ \end{displaymath}
+ Note that since $\bar{\lambda}$ is feasible, $S$ is also feasible and
+ $V(S)\leq OPT$. Hence,
+ \begin{equation}\label{eq:e2}
+ F(\bar{\lambda}) \leq OPT + \max_{i\in\mathcal{N}} V(i).
+ \end{equation}
+Together, \eqref{eq:e1} and \eqref{eq:e2} imply the proposition.\qedhere
+
+\begin{proof}[Proof of Lemma~\ref{lemma:derivative-bounds}]
+ Let us define:
+ \begin{displaymath}
+ S(\lambda)\defeq I_d + \sum_{i=1}^n \lambda_i x_i\T{x_i}
+ \quad\mathrm{and}\quad
+ S_k \defeq I_d + \sum_{i=1}^k x_i\T{x_i}
+ \end{displaymath}
+
+ We have $\partial_i L(\lambda) = \T{x_i}S(\lambda)^{-1}x_i$. Since
+ $S(\lambda)\geq I_d$, $\partial_i L(\lambda)\leq \T{x_i}x_i \leq 1$, which
+ is the right-hand side of the lemma.
+
+ For the left-hand side, note that $S(\lambda) \leq S_n$. Hence
+ $\partial_iL(\lambda)\geq \T{x_i}S_n^{-1}x_i$.
+
+ Using the Sherman-Morrison formula, for all $k\geq 1$:
+ \begin{displaymath}
+ \T{x_i}S_k^{-1} x_i = \T{x_i}S_{k-1}^{-1}x_i
+ - \frac{(\T{x_i}S_{k-1}^{-1}x_k)^2}{1+\T{x_k}S_{k-1}^{-1}x_k}
+ \end{displaymath}
+
+ By the Cauchy-Schwarz inequality:
+ \begin{displaymath}
+ (\T{x_i}S_{k-1}^{-1}x_k)^2 \leq \T{x_i}S_{k-1}^{-1}x_i\;\T{x_k}S_{k-1}^{-1}x_k
+ \end{displaymath}
+
+ Hence:
+ \begin{displaymath}
+ \T{x_i}S_k^{-1} x_i \geq \T{x_i}S_{k-1}^{-1}x_i
+ - \T{x_i}S_{k-1}^{-1}x_i\frac{\T{x_k}S_{k-1}^{-1}x_k}{1+\T{x_k}S_{k-1}^{-1}x_k}
+ \end{displaymath}
+
+ But $\T{x_k}S_{k-1}^{-1}x_k\leq 1$ and $\frac{a}{1+a}\leq \frac{1}{2}$ if
+ $0\leq a\leq 1$, so:
+ \begin{displaymath}
+ \T{x_i}S_{k}^{-1}x_i \geq \T{x_i}S_{k-1}^{-1}x_i
+ - \frac{1}{2}\T{x_i}S_{k-1}^{-1}x_i\geq \frac{\T{x_i}S_{k-1}^{-1}x_i}{2}
+ \end{displaymath}
+
+ By induction:
+ \begin{displaymath}
+ \T{x_i}S_n^{-1} x_i \geq \frac{\T{x_i}x_i}{2^n}
+ \end{displaymath}
+
+ Using that $\T{x_i}{x_i}\geq b$ concludes the proof of the left-hand side
+ of the lemma's inequality.
+\end{proof}
+
+\subsection{Proof of Proposition~\ref{prop:monotonicity}}
+
+The $\log\det$ function is concave and self-concordant (see
+\cite{boyd2004convex}), in this case, the analysis of the barrier method in
+in \cite{boyd2004convex} (Section 11.5.5) can be summarized in the following
+lemma:
+
+\begin{lemma}\label{lemma:barrier}
+For any $\varepsilon>0$, the barrier method computes an $\varepsilon$-accurate
+approximation of $L^*_c$ in time $O(poly(n,d,\log\log\varepsilon^{-1})$.
+\end{lemma}
+
+We show that the optimal value of \eqref{eq:perturbed-primal} is close to the
+optimal value of \eqref{eq:primal} (Lemma~\ref{lemma:proximity}) while being
+well-behaved with respect to changes of the cost
+(Lemma~\ref{lemma:monotonicity}). These lemmas together imply
+Proposition~\ref{prop:monotonicity}.
+
+\begin{lemma}\label{lemma:derivative-bounds}
+ Let $\partial_i L(\lambda)$ denote the $i$-th derivative of $L$, for $i\in\{1,\ldots, n\}$, then:
+ \begin{displaymath}
+ \forall\lambda\in[0, 1]^n,\;\frac{b}{2^n} \leq \partial_i L(\lambda) \leq 1
+ \end{displaymath}
+\end{lemma}
+
+\begin{proof}
+ Let us define:
+ \begin{displaymath}
+ S(\lambda)\defeq I_d + \sum_{i=1}^n \lambda_i x_i\T{x_i}
+ \quad\mathrm{and}\quad
+ S_k \defeq I_d + \sum_{i=1}^k x_i\T{x_i}
+ \end{displaymath}
+
+ We have $\partial_i L(\lambda) = \T{x_i}S(\lambda)^{-1}x_i$. Since
+ $S(\lambda)\geq I_d$, $\partial_i L(\lambda)\leq \T{x_i}x_i \leq 1$, which
+ is the right-hand side of the lemma.
+
+ For the left-hand side, note that $S(\lambda) \leq S_n$. Hence
+ $\partial_iL(\lambda)\geq \T{x_i}S_n^{-1}x_i$.
+
+ Using the Sherman-Morrison formula, for all $k\geq 1$:
+ \begin{displaymath}
+ \T{x_i}S_k^{-1} x_i = \T{x_i}S_{k-1}^{-1}x_i
+ - \frac{(\T{x_i}S_{k-1}^{-1}x_k)^2}{1+\T{x_k}S_{k-1}^{-1}x_k}
+ \end{displaymath}
+
+ By the Cauchy-Schwarz inequality:
+ \begin{displaymath}
+ (\T{x_i}S_{k-1}^{-1}x_k)^2 \leq \T{x_i}S_{k-1}^{-1}x_i\;\T{x_k}S_{k-1}^{-1}x_k
+ \end{displaymath}
+
+ Hence:
+ \begin{displaymath}
+ \T{x_i}S_k^{-1} x_i \geq \T{x_i}S_{k-1}^{-1}x_i
+ - \T{x_i}S_{k-1}^{-1}x_i\frac{\T{x_k}S_{k-1}^{-1}x_k}{1+\T{x_k}S_{k-1}^{-1}x_k}
+ \end{displaymath}
+
+ But $\T{x_k}S_{k-1}^{-1}x_k\leq 1$ and $\frac{a}{1+a}\leq \frac{1}{2}$ if
+ $0\leq a\leq 1$, so:
+ \begin{displaymath}
+ \T{x_i}S_{k}^{-1}x_i \geq \T{x_i}S_{k-1}^{-1}x_i
+ - \frac{1}{2}\T{x_i}S_{k-1}^{-1}x_i\geq \frac{\T{x_i}S_{k-1}^{-1}x_i}{2}
+ \end{displaymath}
+
+ By induction:
+ \begin{displaymath}
+ \T{x_i}S_n^{-1} x_i \geq \frac{\T{x_i}x_i}{2^n}
+ \end{displaymath}
+
+ Using that $\T{x_i}{x_i}\geq b$ concludes the proof of the left-hand side
+ of the lemma's inequality.
+\end{proof}
+
+Let us introduce the lagrangian of problem, \eqref{eq:perturbed-primal}:
+
+\begin{displaymath}
+ \mathcal{L}_{c, \alpha}(\lambda, \mu, \nu, \xi) \defeq L(\lambda)
+ + \T{\mu}(\lambda-\alpha\mathbf{1}) + \T{\nu}(\mathbf{1}-\lambda) + \xi(1-\T{c}\lambda)
+\end{displaymath}
+so that:
+\begin{displaymath}
+ L^*_c(\alpha) = \min_{\mu, \nu, \xi\geq 0}\max_\lambda \mathcal{L}_{c, \alpha}(\lambda, \mu, \nu, \xi)
+\end{displaymath}
+Similarly, we define $\mathcal{L}_{c}\defeq\mathcal{L}_{c, 0}$ the lagrangian of \eqref{eq:primal}.
+
+Let $\lambda^*$ be primal optimal for \eqref{eq:perturbed-primal}, and $(\mu^*,
+\nu^*, \xi^*)$ be dual optimal for the same problem. In addition to primal and
+dual feasibility, the KKT conditions give $\forall i\in\{1, \ldots, n\}$:
+\begin{gather*}
+ \partial_i L(\lambda^*) + \mu_i^* - \nu_i^* - \xi^* c_i = 0\\
+ \mu_i^*(\lambda_i^* - \alpha) = 0\\
+ \nu_i^*(1 - \lambda_i^*) = 0
+\end{gather*}
+
+\begin{lemma}\label{lemma:proximity}
+We have:
+\begin{displaymath}
+ L^*_c - \alpha n^2\leq L^*_c(\alpha) \leq L^*_c
+\end{displaymath}
+In particular, $|L^*_c - L^*_c(\alpha)| \leq \alpha n^2$.
+\end{lemma}
+
+\begin{proof}
+ $\alpha\mapsto L^*_c(\alpha)$ is a decreasing function as it is the
+ maximum value of the $L$ function over a set-decreasing domain, which gives
+ the rightmost inequality.
+
+ Let $\mu^*, \nu^*, \xi^*$ be dual optimal for $(P_{c, \alpha})$, that is:
+ \begin{displaymath}
+ L^*_{c}(\alpha) = \max_\lambda \mathcal{L}_{c, \alpha}(\lambda, \mu^*, \nu^*, \xi^*)
+ \end{displaymath}
+
+ Note that $\mathcal{L}_{c, \alpha}(\lambda, \mu^*, \nu^*, \xi^*)
+ = \mathcal{L}_{c}(\lambda, \mu^*, \nu^*, \xi^*)
+ - \alpha\T{\mathbf{1}}\mu^*$, and that for any $\lambda$ feasible for
+ problem \eqref{eq:primal}, $\mathcal{L}_{c}(\lambda, \mu^*, \nu^*, \xi^*)
+ \geq L(\lambda)$. Hence,
+ \begin{displaymath}
+ L^*_{c}(\alpha) \geq L(\lambda) - \alpha\T{\mathbf{1}}\mu^*
+ \end{displaymath}
+ for any $\lambda$ feasible for \eqref{eq:primal}. In particular, for $\lambda$ primal optimal for $\eqref{eq:primal}$:
+ \begin{equation}\label{eq:local-1}
+ L^*_{c}(\alpha) \geq L^*_c - \alpha\T{\mathbf{1}}\mu^*
+ \end{equation}
+
+ Let us denote by the $M$ the support of $\mu^*$, that is $M\defeq
+ \{i|\mu_i^* > 0\}$, and by $\lambda^*$ a primal optimal point for
+ $\eqref{eq:perturbed-primal}$. From the KKT conditions we see that:
+ \begin{displaymath}
+ M \subseteq \{i|\lambda_i^* = \alpha\}
+ \end{displaymath}
+
+
+ Let us first assume that $|M| = 0$, then $\T{\mathbf{1}}\mu^*=0$ and the lemma follows.
+
+ We will now assume that $|M|\geq 1$. In this case $\T{c}\lambda^*
+ = 1$, otherwise we could increase the coordinates of $\lambda^*$ in $M$,
+ which would increase the value of the objective function and contradict the
+ optimality of $\lambda^*$. Note also, that $|M|\leq n-1$, otherwise, since
+ $\alpha< \frac{1}{n}$, we would have $\T{c}\lambda^*\ < 1$, which again
+ contradicts the optimality of $\lambda^*$. Let us write:
+ \begin{displaymath}
+ 1 = \T{c}\lambda^* = \alpha\sum_{i\in M}c_i + \sum_{i\in \bar{M}}\lambda_i^*c_i
+ \leq \alpha |M| + (n-|M|)\max_{i\in \bar{M}} c_i
+ \end{displaymath}
+ That is:
+ \begin{equation}\label{local-2}
+ \max_{i\in\bar{M}} c_i \geq \frac{1 - |M|\alpha}{n-|M|}> \frac{1}{n}
+ \end{equation}
+ where the last inequality uses again that $\alpha<\frac{1}{n}$. From the
+ KKT conditions, we see that for $i\in M$, $\nu_i^* = 0$ and:
+ \begin{equation}\label{local-3}
+ \mu_i^* = \xi^*c_i - \partial_i L(\lambda^*)\leq \xi^*c_i\leq \xi^*
+ \end{equation}
+ since $\partial_i L(\lambda^*)\geq 0$ and $c_i\leq 1$.
+
+ Furthermore, using the KKT conditions again, we have that:
+ \begin{equation}\label{local-4}
+ \xi^* \leq \inf_{i\in \bar{M}}\frac{\partial_i L(\lambda^*)}{c_i}\leq \inf_{i\in \bar{M}} \frac{1}{c_i}
+ = \frac{1}{\max_{i\in\bar{M}} c_i}
+ \end{equation}
+ where the last inequality uses Lemma~\ref{lemma:derivative-bounds}.
+
+ Combining \eqref{local-2}, \eqref{local-3} and \eqref{local-4}, we get that:
+ \begin{displaymath}
+ \sum_{i\in M}\mu_i^* \leq |M|\xi^* \leq n\xi^*\leq \frac{n}{\max_{i\in\bar{M}} c_i} \leq n^2
+ \end{displaymath}
+
+ This implies that:
+ \begin{displaymath}
+ \T{\mathbf{1}}\mu^* = \sum_{i=1}^n \mu^*_i = \sum_{i\in M}\mu_i^*\leq n^2
+ \end{displaymath}
+ which in addition to \eqref{eq:local-1} proves the lemma.
+\end{proof}
+
+\begin{lemma}\label{lemma:monotonicity}
+ If $c'$ = $(c_i', c_{-i})$, with $c_i'\leq c_i - \delta$, we have:
+ \begin{displaymath}
+ L^*_{c'}(\alpha) \geq L^*_c(\alpha) + \frac{\alpha\delta b}{2^n}
+ \end{displaymath}
+\end{lemma}
+
+\begin{proof}
+ Let $\mu^*, \nu^*, \xi^*$ be dual optimal for $(P_{c', \alpha})$. Noting that:
+ \begin{displaymath}
+ \mathcal{L}_{c', \alpha}(\lambda, \mu^*, \nu^*, \xi^*) \geq
+ \mathcal{L}_{c, \alpha}(\lambda, \mu^*, \nu^*, \xi^*) + \lambda_i\xi^*\delta,
+ \end{displaymath}
+ we get similarly to Lemma~\ref{lemma:proximity}:
+ \begin{displaymath}
+ L^*_{c'}(\alpha) \geq L(\lambda) + \lambda_i\xi^*\delta
+ \end{displaymath}
+ for any $\lambda$ feasible for \eqref{eq:perturbed-primal}. In particular, for $\lambda^*$ primal optimal for \eqref{eq:perturbed-primal}:
+ \begin{displaymath}
+ L^*_{c'}(\alpha) \geq L^*_{c}(\alpha) + \alpha\xi^*\delta
+ \end{displaymath}
+ since $\lambda_i^*\geq \alpha$.
+
+ Using the KKT conditions for $(P_{c', \alpha})$, we can write:
+ \begin{displaymath}
+ \xi^* = \inf_{i:\lambda^{'*}_i>\alpha} \frac{\T{x_i}S(\lambda^{'*})^{-1}x_i}{c_i'}
+ \end{displaymath}
+ with $\lambda^{'*}$ optimal for $(P_{c', \alpha})$. Since $c_i'\leq 1$, using Lemma~\ref{lemma:derivative-bounds}, we get that $\xi^*\geq \frac{b}{2^n}$, which concludes the proof.
+\end{proof}
+
+\subsubsection*{End of the proof of Proposition~\ref{prop:monotonicity}}
+
+Let $\tilde{L}^*_c$ be the approximation computed by
+Algorithm~\ref{alg:monotone}.
+\begin{enumerate}
+ \item using Lemma~\ref{lemma:proximity}:
+\begin{displaymath}
+ |\tilde{L}^*_c - L^*_c| \leq |\tilde{L}^*_c - L^*_c(\alpha)| + |L^*_c(\alpha) - L^*_c|
+ \leq \alpha\delta + \alpha n^2 = \varepsilon
+\end{displaymath}
+which proves the $\varepsilon$-accuracy.
+
+\item for the $\delta$-decreasingness, let $c' = (c_i', c_{-i})$ with $c_i'\leq
+ c_i-\delta$, then:
+\begin{displaymath}
+ \tilde{L}^*_{c'} \geq L^*_{c'} - \frac{\alpha\delta b}{2^{n+1}}
+ \geq L^*_c + \frac{\alpha\delta b}{2^{n+1}}
+ \geq \tilde{L}^*_c
+\end{displaymath}
+where the first and inequality come from the accuracy of the approximation, and
+the inner inequality follows from Lemma~\ref{lemma:monotonicity}.
+
+\item the accuracy of the approximation $\tilde{L}^*_c$ is:
+\begin{displaymath}
+ A\defeq\frac{\varepsilon\delta b}{2^{n+1}(\delta + n^2)}
+\end{displaymath}
+
+Note that:
+\begin{displaymath}
+ \log\log A^{-1} = O\bigg(\log\log\frac{1}{\varepsilon\delta b} + \log n\bigg)
+\end{displaymath}
+Using Lemma~\ref{lemma:barrier} concludes the proof of the running time.\qed
+\end{enumerate}
+
+\subsection{Proof of Theorem~\ref{thm:main}}\label{sec:proofofmainthm}
+
+We now present the proof of Theorem~\ref{thm:main}. $\delta$-truthfulness and
+individual rationality follow from $\delta$-monotonicity and threshold
+payments. $\delta$-monotonicity and budget feasibility follow the same steps as the
+analysis of \citeN{chen}; for the sake of completeness, we restate their proof
+here.
+
\begin{lemma}\label{lemma:monotone}
Our mechanism for \EDP{} is $\delta$-monotone and budget feasible.
\end{lemma}
+
\begin{proof}
Consider an agent $i$ with cost $c_i$ that is
selected by the mechanism, and suppose that she reports
@@ -28,11 +580,6 @@ Our mechanism for \EDP{} is $\delta$-monotone and budget feasible.
Suppose now that when $i$ reports $c_i$, $OPT'_{-i^*} < C V(i^*)$. Then $s_i(c_i,c_{-i})=1$ iff $i = i^*$.
Reporting $c_{i^*}'\leq c_{i^*}$ does not change $V(i^*)$ nor
$OPT'_{-i^*} \leq C V(i^*)$; thus $s_{i^*}(c_{i^*}',c_{-i^*})=1$, so the mechanism is monotone.
-%\end{proof}
-%\begin{lemma}\label{lemma:budget-feasibility}
-%The mechanism is budget feasible.
-%\end{lemma}
-%\begin{proof}
To show budget feasibility, suppose that $OPT'_{-i^*} < C V(i^*)$. Then the mechanism selects $i^*$. Since the bid of $i^*$ does not affect the above condition, the threshold payment of $i^*$ is $B$ and the mechanism is budget feasible.
Suppose that $OPT'_{-i^*} \geq C V(i^*)$.
@@ -57,4 +604,116 @@ Hence, the total payment is bounded by the telescopic sum:
\end{displaymath}
\end{proof}
+The complexity of the mechanism is given by the following lemma.
+
+\begin{lemma}[Complexity]\label{lemma:complexity}
+ For any $\varepsilon > 0$ and any $\delta>0$, the complexity of the mechanism is
+ $O\big(poly(n, d, \log\log\frac{1}{b\varepsilon\delta})\big)$
+\end{lemma}
+
+\begin{proof}
+ The value function $V$ in \eqref{modified} can be computed in time
+ $O(\text{poly}(n, d))$ and the mechanism only involves a linear
+ number of queries to the function $V$.
+
+ By Proposition~\ref{prop:monotonicity}, line 3 of Algorithm~\ref{mechanism}
+ can be computed in time
+ $O(\text{poly}(n, d, \log\log \varepsilon^{-1}))$. Hence the allocation
+ function's complexity is as stated.
+ %Payments can be easily computed in time $O(\text{poly}(n, d))$ as in prior work.
+\junk{
+ Using Singer's characterization of the threshold payments
+ \cite{singer-mechanisms}, one can verify that they can be computed in time
+ $O(\text{poly}(n, d))$.
+ }
+\end{proof}
+
+Finally, we prove the approximation ratio of the mechanism.
+
+We use the following lemma from \cite{chen} which bounds $OPT$ in terms of
+the value of $S_G$, as computed in Algorithm \ref{mechanism}, and $i^*$, the
+element of maximum value.
+
+\begin{lemma}[\cite{chen}]\label{lemma:greedy-bound}
+Let $S_G$ be the set computed in Algorithm \ref{mechanism} and let
+$i^*=\argmax_{i\in\mathcal{N}} V(\{i\})$. We have:
+\begin{displaymath}
+OPT \leq \frac{e}{e-1}\big( 3 V(S_G) + 2 V(i^*)\big).
+\end{displaymath}
+\end{lemma}
+
+Using Proposition~\ref{prop:relaxation} and~\ref{lemma:greedy-bound} we can complete the proof of
+Theorem~\ref{thm:main} by showing that, for any $\varepsilon > 0$, if
+$OPT_{-i}'$, the optimal value of $L$ when $i^*$ is excluded from
+$\mathcal{N}$, has been computed to a precision $\varepsilon$, then the set
+$S^*$ allocated by the mechanism is such that:
+\begin{equation} \label{approxbound}
+OPT
+\leq \frac{10e\!-\!3 + \sqrt{64e^2\!-\!24e\!+\!9}}{2(e\!-\!1)} V(S^*)\!
++ \! \varepsilon .
+\end{equation}
+To see this, let $L^*_{-i^*}$ be the true maximum value of $L$ subject to
+$\lambda_{i^*}=0$, $\sum_{i\in \mathcal{N}\setminus{i^*}}c_i\leq B$. From line
+3 of Algorithm~\ref{mechanism}, we have
+$L^*_{-i^*}-\varepsilon\leq OPT_{-i^*}' \leq L^*_{-i^*}+\varepsilon$.
+
+If the condition on line 4 of the algorithm holds, then
+\begin{displaymath}
+ V(i^*) \geq \frac{1}{C}L^*_{-i^*}-\frac{\varepsilon}{C} \geq
+ \frac{1}{C}OPT_{-i^*} -\frac{\varepsilon}{C}.
+\end{displaymath}
+Indeed, $L^*_{-i^*}\geq OPT_{-i^*}$ as $L$ is a fractional relaxation of $V$. Also, $OPT \leq OPT_{-i^*} + V(i^*)$,
+hence,
+\begin{equation}\label{eq:bound1}
+ OPT\leq (1+C)V(i^*) + \varepsilon.
+\end{equation}
+
+If the condition does not hold, by observing that $L^*_{-i^*}\leq L^*_c$ and
+applying Proposition~\ref{prop:relaxation}, we get
+\begin{displaymath}
+ V(i^*)\leq \frac{1}{C}L^*_{-i^*} + \frac{\varepsilon}{C}
+ \leq \frac{1}{C} \big(2 OPT + 2 V(i^*)\big) + \frac{\varepsilon}{C}.
+\end{displaymath}
+Applying Lemma~\ref{lemma:greedy-bound},
+\begin{displaymath}
+ V(i^*) \leq \frac{1}{C}\left(\frac{2e}{e-1}\big(3 V(S_G)
+ + 2 V(i^*)\big) + 2 V(i^*)\right) + \frac{\varepsilon}{C}.
+\end{displaymath}
+Thus, if $C$ is such that $C(e-1) -6e +2 > 0$,
+\begin{align*}
+ V(i^*) \leq \frac{6e}{C(e-1)- 6e + 2} V(S_G)
+ + \frac{(e-1)\varepsilon}{C(e-1)- 6e + 2}.
+\end{align*}
+Finally, using Lemma~\ref{lemma:greedy-bound} again, we get
+\begin{equation}\label{eq:bound2}
+ OPT(V, \mathcal{N}, B) \leq
+ \frac{3e}{e-1}\left( 1 + \frac{4e}{C (e-1) -6e +2}\right) V(S_G)
+ + \frac{2e\varepsilon}{C(e-1)- 6e + 2}.
+\end{equation}
+To minimize the coefficients of $V_{i^*}$ and $V(S_G)$ in \eqref{eq:bound1}
+and \eqref{eq:bound2} respectively, we wish to chose $C$ that minimizes
+\begin{displaymath}
+ \max\left(1+C,\frac{3e}{e-1}\left( 1 + \frac{4e}{C (e-1) -6e +2}
+ \right)\right).
+\end{displaymath}
+This function has two minima, only one of those is such that $C(e-1) -6e
++2 \geq 0$. This minimum is
+\begin{equation}\label{eq:constant}
+ C = \frac{8e-1 + \sqrt{64e^2-24e + 9}}{2(e-1)}.
+\end{equation}
+For this minimum, $\frac{2e\varepsilon}{C^*(e-1)- 6e + 2}\leq \varepsilon.$
+Placing the expression of $C$ in \eqref{eq:bound1} and \eqref{eq:bound2}
+gives the approximation ratio in \eqref{approxbound}, and concludes the proof
+of Theorem~\ref{thm:main}.\hspace*{\stretch{1}}\qed
+
+\subsection{Proof of Theorem \ref{thm:lowerbound}}
+Suppose, for contradiction, that such a mechanism exists. Consider two
+experiments with dimension $d=2$, such that $x_1 = e_1=[1 ,0]$, $x_2=e_2=[0,1]$
+and $c_1=c_2=B/2+\epsilon$. Then, one of the two experiments, say, $x_1$, must
+be in the set selected by the mechanism, otherwise the ratio is unbounded,
+a contradiction. If $x_1$ lowers its value to $B/2-\epsilon$, by monotonicity
+it remains in the solution; by threshold payment, it is paid at least
+$B/2+\epsilon$. So $x_2$ is not included in the solution by budget feasibility
+and individual rationality: hence, the selected set attains a value $\log2$,
+while the optimal value is $2\log 2$.\hspace*{\stretch{1}}\qed