summaryrefslogtreecommitdiffstats
path: root/appendix.tex
diff options
context:
space:
mode:
Diffstat (limited to 'appendix.tex')
-rw-r--r--appendix.tex12
1 files changed, 6 insertions, 6 deletions
diff --git a/appendix.tex b/appendix.tex
index 11607b0..b1d35d6 100644
--- a/appendix.tex
+++ b/appendix.tex
@@ -5,7 +5,7 @@ Our mechanism for \EDP{} is monotone and budget feasible.
Consider an agent $i$ with cost $c_i$ that is
selected by the mechanism, and suppose that she reports
a cost $c_i'\leq c_i$ while all other costs stay the same.
- Suppose that when $i$ reports $c_i$, $L(\xi) \geq C V(i^*)$; then, as $s_i(c_i,c_{-i})=1$, $i\in S_G$.
+ Suppose that when $i$ reports $c_i$, $OPT'_{-i^*} \geq C V(i^*)$; then, as $s_i(c_i,c_{-i})=1$, $i\in S_G$.
By reporting a cost $c_i'\leq c_i$, $i$ may be selected at an earlier iteration of the greedy algorithm.
%using the submodularity of $V$, we see that $i$ will satisfy the greedy
%selection rule:
@@ -22,18 +22,18 @@ Our mechanism for \EDP{} is monotone and budget feasible.
\frac{B}{2}\frac{V(S_i\cup\{i\})-V(S_i)}{V(S_i\cup\{i\})}
\leq \frac{B}{2}\frac{V(S_i'\cup\{i\})-V(S_i')}{V(S_i'\cup\{i\})}
\end{align*}
- by the monotonicity and submodularity of $V$. Hence $i\in S_G'$. As $L(\xi)$, is the optimal value of \eqref{relax} under relaxation $L$ when $i^*$ is excluded from $\mathcal{N}$, reducing the costs can only increase this value, so under $c'_i\leq c_i$ the greedy set is still allocated and $s_i(c_i',c_{-i}) =1$.
- Suppose now that when $i$ reports $c_i$, $L(\xi) < C V(i^*)$. Then $s_i(c_i,c_{-i})=1$ iff $i = i^*$.
+ by the monotonicity and submodularity of $V$. Hence $i\in S_G'$. As $OPT'_{-i^*}$, is the optimal value of \eqref{relax} under relaxation $L$ when $i^*$ is excluded from $\mathcal{N}$, reducing the costs can only increase this value, so under $c'_i\leq c_i$ the greedy set is still allocated and $s_i(c_i',c_{-i}) =1$.
+ Suppose now that when $i$ reports $c_i$, $OPT'_{-i^*} < C V(i^*)$. Then $s_i(c_i,c_{-i})=1$ iff $i = i^*$.
Reporting $c_{i^*}'\leq c_{i^*}$ does not change $V(i^*)$ nor
- $L(\xi) \leq C V(i^*)$; thus $s_{i^*}(c_{i^*}',c_{-i^*})=1$, so the mechanism is monotone.
+ $OPT'_{-i^*} \leq C V(i^*)$; thus $s_{i^*}(c_{i^*}',c_{-i^*})=1$, so the mechanism is monotone.
%\end{proof}
%\begin{lemma}\label{lemma:budget-feasibility}
%The mechanism is budget feasible.
%\end{lemma}
%\begin{proof}
-To show budget feasibility, suppose that $L(\xi) < C V(i^*)$. Then the mechanism selects $i^*$. Since the bid of $i^*$ does not affect the above condition, the threshold payment of $i^*$ is $B$ and the mechanism is budget feasible.
-Suppose that $L(\xi) \geq C V(i^*)$.
+To show budget feasibility, suppose that $OPT'_{-i^*} < C V(i^*)$. Then the mechanism selects $i^*$. Since the bid of $i^*$ does not affect the above condition, the threshold payment of $i^*$ is $B$ and the mechanism is budget feasible.
+Suppose that $OPT'_{-i^*} \geq C V(i^*)$.
Denote by $S_G$ the set selected by the greedy algorithm, and for $i\in S_G$, denote by
$S_i$ the subset of the solution set that was selected by the greedy algorithm just prior to the addition of $i$---both sets determined for the present cost vector $c$.
%Chen \emph{et al.}~\cite{chen} show that,