diff options
Diffstat (limited to 'dual.tex')
| -rw-r--r-- | dual.tex | 263 |
1 files changed, 263 insertions, 0 deletions
diff --git a/dual.tex b/dual.tex new file mode 100644 index 0000000..a2d28c6 --- /dev/null +++ b/dual.tex @@ -0,0 +1,263 @@ +\documentclass{article} +\usepackage[T1]{fontenc} +\usepackage[utf8]{inputenc} +\usepackage{amsmath, amsfonts, amsthm} +\newtheorem{proposition}{Proposition} +\input{definitions} + +\begin{document} +Let $c$ be a cost vector in $[0,1]^n$, and $x_1,\ldots,x_n$, $n$ vectors in +$\mathbf{R}^d$ such that for all $i\in\{1,\ldots,n\}$, $b\leq \T{x_i}{x_i}\leq +1$ for some $b\in(0,1]$. Let us consider the following convex optimization +problem: +\begin{equation}\tag{$P_c$}\label{eq:primal} + \begin{split} + \mathrm{maximize}\quad & L(\lambda) \defeq\log\det\left(I_d + \sum_{i=1}^n + \lambda_i x_i x_i^T\right)\\ + \textrm{subject to}\quad & c^T\lambda \leq 1 \;;\; 0\leq\lambda\leq \mathbf{1} +\end{split} +\end{equation} +We denote by $L^*_c$ its optimal value. + +Let $\alpha\in\mathbf{R}^+$, consider the perturbed optimization problem: +\begin{equation}\tag{$P_{c, \alpha}$}\label{eq:perturbed-primal} + \begin{split} + \mathrm{maximize}\quad & L(\lambda) \defeq\log\det\left(I_d + \sum_{i=1}^n + \lambda_i x_i x_i^T\right)\\ + \textrm{subject to}\quad & c^T\lambda \leq 1 \;;\; \alpha\leq\lambda\leq \mathbf{1} +\end{split} +\end{equation} +and denote by $L^*_c(\alpha)$ its optimal value. Note that we have $L^*_c = L^*_c(0)$. + +We will assume that $\alpha<\frac{1}{n}$ so that \eqref{eq:perturbed-primal} has at +least one feasible point: $(\frac{1}{n},\ldots,\frac{1}{n})$. + +Let us introduce the lagrangian of problem, \eqref{eq:perturbed-primal}: +\begin{displaymath} + \mathcal{L}_{c, \alpha}(\lambda, \mu, \nu, \xi) \defeq L(\lambda) + + \T{\mu}(\lambda-\alpha\mathbf{1}) + \T{\nu}(\mathbf{1}-\lambda) + \xi(1-\T{c}\lambda) +\end{displaymath} +so that: +\begin{displaymath} + L^*_c(\alpha) = \min_{\mu, \nu, \xi\geq 0}\max_\lambda \mathcal{L}_{c, \alpha}(\lambda, \mu, \nu, \xi) +\end{displaymath} +Similarly, we define $\mathcal{L}_{c}\defeq\mathcal{L}_{c, 0}$ the lagrangian of \eqref{eq:primal}. + +Let $\lambda^*$ be primal optimal for \eqref{eq:perturbed-primal}, and $(\mu^*, +\nu^*, \xi^*)$ be dual optimal for the same problem. In addition to primal and +dual feasibility, the KKT conditions give $\forall i\in\{1, \ldots, n\}$: +\begin{gather*} + \partial_i L(\lambda^*) + \mu_i^* - \nu_i^* - \xi^* c_i = 0\\ + \mu_i^*(\lambda_i^* - \alpha) = 0\\ + \nu_i^*(1 - \lambda_i^*) = 0 +\end{gather*} + +\begin{lemma}\label{lemma:derivative-bounds} + Let $\partial_i L(\lambda)$ denote the $i$-th derivative of $L$, for $i\in\{1,\ldots, n\}$, then: + \begin{displaymath} + \forall\lambda\in[0, 1]^n,\;\frac{b}{2^n} \leq \partial_i L(\lambda) \leq 1 + \end{displaymath} +\end{lemma} + +\begin{proof} + Let us define: + \begin{displaymath} + S(\lambda)\defeq I_d + \sum_{i=1}^n \lambda_i x_i\T{x_i} + \quad\mathrm{and}\quad + S_k \defeq I_d + \sum_{i=1}^k x_i\T{x_i} + \end{displaymath} + + We have $\partial_i L(\lambda) = \T{x_i}S(\lambda)^{-1}x_i$. Since + $S(\lambda)\geq I_d$, $\partial_i L(\lambda)\leq \T{x_i}x_i \leq 1$, which + is the right-hand side of the lemma. + + For the left-hand side, note that $S(\lambda) \leq S_n$. Hence + $\partial_iL(\lambda)\geq \T{x_i}S_n^{-1}x_i$. + + Using the Sherman-Morrison formula, for all $k\geq 1$: + \begin{displaymath} + \T{x_i}S_k^{-1} x_i = \T{x_i}S_{k-1}^{-1}x_i + - \frac{(\T{x_i}S_{k-1}^{-1}x_k)^2}{1+\T{x_k}S_{k-1}^{-1}x_k} + \end{displaymath} + + By the Cauchy-Schwarz inequality: + \begin{displaymath} + (\T{x_i}S_{k-1}^{-1}x_k)^2 \leq \T{x_i}S_{k-1}^{-1}x_i\;\T{x_k}S_{k-1}^{-1}x_k + \end{displaymath} + + Hence: + \begin{displaymath} + \T{x_i}S_k^{-1} x_i \geq \T{x_i}S_{k-1}^{-1}x_i + - \T{x_i}S_{k-1}^{-1}x_i\frac{\T{x_k}S_{k-1}^{-1}x_k}{1+\T{x_k}S_{k-1}^{-1}x_k} + \end{displaymath} + + But $\T{x_k}S_{k-1}^{-1}x_k\leq 1$ and $\frac{a}{1+a}\leq \frac{1}{2}$ if + $0\leq a\leq 1$, so: + \begin{displaymath} + \T{x_i}S_{k}^{-1}x_i \geq \T{x_i}S_{k-1}^{-1}x_i + - \frac{1}{2}\T{x_i}S_{k-1}^{-1}x_i\geq \frac{\T{x_i}S_{k-1}^{-1}x_i}{2} + \end{displaymath} + + By induction: + \begin{displaymath} + \T{x_i}S_n^{-1} x_i \geq \frac{\T{x_i}x_i}{2^n} + \end{displaymath} + + Using that $\T{x_i}{x_i}\geq b$ concludes the proof of the left-hand side + of the lemma's inequality. +\end{proof} + +\begin{lemma}\label{lemma:proximity} +We have: +\begin{displaymath} + L^*_c - \alpha n^2\leq L^*_c(\alpha) \leq L^*_c +\end{displaymath} +In particular, $|L^*_c - L^*_c(\alpha)| \leq \alpha n^2$. +\end{lemma} + +\begin{proof} + $\alpha\mapsto L^*_c(\alpha)$ is a decreasing function as it is the + maximum value of the $L$ function over a set-decreasing domain, which gives + the rightmost inequality. + + Let $\mu^*, \nu^*, \xi^*$ be dual optimal for $(P_{c, \alpha})$, that is: + \begin{displaymath} + L^*_{c}(\alpha) = \max_\lambda \mathcal{L}_{c, \alpha}(\lambda, \mu^*, \nu^*, \xi^*) + \end{displaymath} + + Note that $\mathcal{L}_{c, \alpha}(\lambda, \mu^*, \nu^*, \xi^*) + = \mathcal{L}_{c}(\lambda, \mu^*, \nu^*, \xi^*) + - \alpha\T{\mathbf{1}}\mu^*$, and that for any $\lambda$ feasible for + problem \eqref{eq:primal}, $\mathcal{L}_{c}(\lambda, \mu^*, \nu^*, \xi^*) + \geq L(\lambda)$. Hence, + \begin{displaymath} + L^*_{c}(\alpha) \geq L(\lambda) - \alpha\T{\mathbf{1}}\mu^* + \end{displaymath} + for any $\lambda$ feasible for \eqref{eq:primal}. In particular, for $\lambda$ primal optimal for $\eqref{eq:primal}$: + \begin{equation}\label{eq:local-1} + L^*_{c}(\alpha) \geq L^*_c - \alpha\T{\mathbf{1}}\mu^* + \end{equation} + + Let us denote by the $M$ the support of $\mu^*$, that is $M\defeq + \{i|\mu_i^* > 0\}$, and by $\lambda^*$ a primal optimal point for + $\eqref{eq:perturbed-primal}$. From the KKT conditions we see that: + \begin{displaymath} + M \subseteq \{i|\lambda_i^* = \alpha\} + \end{displaymath} + + + Let us first assume that $|M| = 0$, then $\T{\mathbf{1}}\mu^*=0$ and the lemma follows. + + We will now assume that $|M|\geq 1$. In this case $\T{c}\lambda^* + = 1$, otherwise we could increase the coordinates of $\lambda^*$ in $M$, + which would increase the value of the objective function and contradict the + optimality of $\lambda^*$. Note also, that $|M|\leq n-1$, otherwise, since + $\alpha< \frac{1}{n}$, we would have $\T{c}\lambda^*\ < 1$, which again + contradicts the optimality of $\lambda^*$. Let us write: + \begin{displaymath} + 1 = \T{c}\lambda^* = \alpha\sum_{i\in M}c_i + \sum_{i\in \bar{M}}\lambda_i^*c_i + \leq \alpha |M| + (n-|M|)\max_{i\in \bar{M}} c_i + \end{displaymath} + That is: + \begin{equation}\label{local-2} + \max_{i\in\bar{M}} c_i \geq \frac{1 - |M|\alpha}{n-|M|}> \frac{1}{n} + \end{equation} + where the last inequality uses again that $\alpha<\frac{1}{n}$. From the + KKT conditions, we see that for $i\in M$, $\nu_i^* = 0$ and: + \begin{equation}\label{local-3} + \mu_i^* = \xi^*c_i - \partial_i L(\lambda^*)\leq \xi^*c_i\leq \xi^* + \end{equation} + since $\partial_i L(\lambda^*)\geq 0$ and $c_i\leq 1$. + + Furthermore, using the KKT conditions again, we have that: + \begin{equation}\label{local-4} + \xi^* \leq \inf_{i\in \bar{M}}\frac{\partial_i L(\lambda^*)}{c_i}\leq \inf_{i\in \bar{M}} \frac{1}{c_i} + = \frac{1}{\max_{i\in\bar{M}} c_i} + \end{equation} + where the last inequality uses Lemma~\ref{lemma:derivative-bounds}. + + Combining \eqref{local-2}, \eqref{local-3} and \eqref{local-4}, we get that: + \begin{displaymath} + \sum_{i\in M}\mu_i^* \leq |M|\xi^* \leq n\xi^*\leq \frac{n}{\max_{i\in\bar{M}} c_i} \leq n^2 + \end{displaymath} + + This implies that: + \begin{displaymath} + \T{\mathbf{1}}\mu^* = \sum_{i=1}^n \mu^*_i = \sum_{i\in M}\mu_i^*\leq n^2 + \end{displaymath} + which in addition to \eqref{eq:local-1} proves the lemma. +\end{proof} + +\begin{lemma}\label{lemma:monotonicity} + If $c'$ = $(c_i', c_{-i})$, with $c_i'\leq c_i - \delta$, we have: + \begin{displaymath} + L^*_{c'}(\alpha) \geq L^*_c(\alpha) + \frac{\alpha\delta b}{2^n} + \end{displaymath} +\end{lemma} + +\begin{proof} + Let $\mu^*, \nu^*, \xi^*$ be dual optimal for $(P_{c', \alpha})$. Noting that, $\mathcal{L}_{c', \alpha}(\lambda, \mu^*, \nu^*, \xi^*) \geq + \mathcal{L}_{c, \alpha}(\lambda, \mu^*, \nu^*, \xi^*) + \lambda_i\xi^*\delta$, we get similarly to Lemma~\ref{lemma:proximity}: + \begin{displaymath} + L^*_{c'}(\alpha) \geq L(\lambda) + \lambda_i\xi^*\delta + \end{displaymath} + for any $\lambda$ feasible for \eqref{eq:perturbed-primal}. In particular, for $\lambda^*$ primal optimal for \eqref{eq:perturbed-primal}: + \begin{displaymath} + L^*_{c'}(\alpha) \geq L^*_{c}(\alpha) + \alpha\xi^*\delta + \end{displaymath} + since $\lambda_i^*\geq \alpha$. + + Using the KKT conditions for $(P_{c', \alpha})$, we can write: + \begin{displaymath} + \xi^* = \inf_{i:\lambda^{'*}_i>\alpha} \frac{\T{x_i}S(\lambda^{'*})^{-1}x_i}{c_i'} + \end{displaymath} + with $\lambda^{'*}$ optimal for $(P_{c', \alpha})$. Since $c_i'\leq 1$, using Lemma~\ref{lemma:derivative-bounds}, we get that $\xi^*\geq \frac{b}{2^n}$, which concludes the proof. +\end{proof} + +\begin{proposition} + Let $\delta\in(0,1]$. For any $\varepsilon\in(0,1]$, there exists + a routine which computes an approximate solution $\tilde{L}^*_c$ to + \eqref{eq:primal} such that: + \begin{enumerate} + \item $|\tilde{L}^*_c - L^*_c| \leq \varepsilon$ + \item for all $c' = (c_i', c_{-i})$ with $c_i'\leq c_i-\delta$, $\tilde{L}^*_c \leq \tilde{L}^*_{c'}$ + \item the routine's running time is $O\big(poly(n, d, \log\log\frac{1}{b\varepsilon\delta})\big)$ + \end{enumerate} +\end{proposition} + +\begin{proof} +Let $\varepsilon$ in $(0, 1]$. The routine works as follows: set $\alpha\defeq +\varepsilon(\delta + n^2)^{-1}$ and return an approximation $\tilde{L}^*_c$ of +$L^*_c(\alpha)$ with an accuracy $\frac{1}{2^{n+1}}\alpha\delta b$ computed by +a standard convex optimization algorithm. Note that this choice of $\alpha$ +implies $\alpha<\frac{1}{n}$ as required. + +\begin{enumerate} + \item using Lemma~\ref{lemma:proximity}: +\begin{displaymath} + |\tilde{L}^*_c - L^*_c| \leq |\tilde{L}^*_c - L^*_c(\alpha)| + |L^*_c(\alpha) - L^*_c| + \leq \alpha\delta + \alpha n^2 = \varepsilon +\end{displaymath} + +\item let $c' = (c_i', c_{-i})$ with $c_i'\leq c_i-\delta$, then: +\begin{displaymath} + \tilde{L}^*_{c'} \geq L^*_{c'} - \frac{\alpha\delta b}{2^{n+1}} + \geq L^*_c + \frac{\alpha\delta b}{2^{n+1}} + \geq \tilde{L}^*_c +\end{displaymath} +where the first and inequality come from the accuracy of the approximation, and +the inner inequality follows from Lemma~\ref{lemma:monotonicity}. + +\item the accuracy of the approximation $\tilde{L}^*_c$ is: +\begin{displaymath} + A\defeq\frac{\varepsilon\delta b}{2^{n+1}(\delta + n^2)} +\end{displaymath} +\sloppy +hence, the standard convex optimization algorithm runs in time $O(poly(n, d,\log\log A^{-1}))$. Note that: +\begin{displaymath} + \log\log A^{-1} = O\bigg(\log\log\frac{1}{\varepsilon\delta b} + \log n\bigg) +\end{displaymath} +which yields the wanted running time for the routine.\qedhere +\end{enumerate} +\end{proof} +\end{document} |
