diff options
Diffstat (limited to 'dual2.tex')
| -rw-r--r-- | dual2.tex | 350 |
1 files changed, 350 insertions, 0 deletions
diff --git a/dual2.tex b/dual2.tex new file mode 100644 index 0000000..ca07954 --- /dev/null +++ b/dual2.tex @@ -0,0 +1,350 @@ +\documentclass{article} +\usepackage[T1]{fontenc} +\usepackage[utf8]{inputenc} +\usepackage{amsmath, amsfonts, amsthm} +\newtheorem{lemma}{Lemma} +\newtheorem{proposition}{Proposition} +\input{definitions} + +\begin{document} +Let $c$ be a cost vector in $[0,1]^n$, and $x_1,\ldots,x_n$, $n$ vectors in +$\mathbf{R}^d$ such that for all $i\in\{1,\ldots,n\}$, $b\leq \T{x_i}{x_i}\leq +1$ for some $b\in(0,1]$. Let us consider the following convex optimization +problem: +\begin{equation}\tag{$P_c$}\label{eq:primal} + \begin{split} + \mathrm{maximize}\quad & L(\lambda) \defeq\log\det\left(I_d + \sum_{i=1}^n + \lambda_i x_i x_i^T\right)\\ + \textrm{subject to}\quad & c^T\lambda \leq 1 \;;\; 0\leq\lambda\leq \mathbf{1} +\end{split} +\end{equation} +We denote by $L^*_c$ its optimal value. + +Let $\alpha\in\mathbf{R}^+$, consider the perturbed optimization problem: +\begin{equation}\tag{$P_{c, \alpha}$}\label{eq:perturbed-primal} + \begin{split} + \mathrm{maximize}\quad & L(\lambda) \defeq\log\det\left(I_d + \sum_{i=1}^n + \lambda_i x_i x_i^T\right)\\ + \textrm{subject to}\quad & c^T\lambda \leq 1 \;;\; \alpha\leq\lambda\leq \mathbf{1} +\end{split} +\end{equation} +and denote by $L^*_c(\alpha)$ its optimal value. Note that we have $L^*_c = L^*_c(0)$. + +We will assume that $\alpha\leq\frac{1}{n}$ so that \eqref{eq:perturbed-primal} has at +least one feasible point: $(\frac{1}{n},\ldots,\frac{1}{n})$. + +Let us introduce the lagrangian of problem, \eqref{eq:perturbed-primal}: +\begin{displaymath} + \mathcal{L}_{c, \alpha}(\lambda, \mu, \nu, \xi) \defeq L(\lambda) + + \T{\mu}(\lambda-\mathbf{\alpha}) + \T{\nu}(\mathbf{1}-\lambda) + \xi(1-\T{c}\lambda) +\end{displaymath} +so that: +\begin{displaymath} + L^*_c(\alpha) = \min_{\mu, \nu, \xi\geq 0}\max_\lambda \mathcal{L}_{c, \alpha}(\lambda, \mu, \nu, \xi) +\end{displaymath} +Similarly, we define $\mathcal{L}_{c}\defeq\mathcal{L}_{c, 0}$ the lagrangian of \eqref{eq:primal}. + +Let $\lambda^*$ be primal optimal for \eqref{eq:perturbed-primal}, and $(\mu^*, +\nu^*, \xi^*)$ be dual optimal for the same problem. In addition to primal and +dual feasibility, the KKT conditions give $\forall i\in\{1, \ldots, n\}$: +\begin{gather*} + \partial_i L(\lambda^*) + \mu_i^* - \nu_i^* - \xi^* c_i = 0\\ + \mu_i^*(\lambda_i^* - \alpha) = 0\\ + \nu_i^*(1 - \lambda_i^*) = 0 +\end{gather*} + +\begin{lemma}\label{lemma:derivative-bounds} + Let $\partial_i L(\lambda)$ denote the $i$-th derivative of $L$, for $i\in\{1,\ldots, n\}$, then: + \begin{displaymath} + \forall\lambda\in[0, 1]^n,\;\frac{b}{2^n} \leq \partial_i L(\lambda) \leq 1 + \end{displaymath} +\end{lemma} + +\begin{proof} + Let us define: + \begin{displaymath} + S(\lambda)\defeq I_d + \sum_{i=1}^n \lambda_i x_i\T{x_i} + \quad\mathrm{and}\quad + S_k \defeq I_d + \sum_{i=1}^n x_i\T{x_i} + \end{displaymath} + + We have $\partial_i L(\lambda) = \T{x_i}S(\lambda)^{-1}x_i$. Since + $S(\lambda)\geq I_d$, $\partial_i L(\lambda)\leq \T{x_i}x_i \leq 1$, which + is the right-hand side of the lemma. + + For the left-hand side, note that $S(\lambda) \leq S_n$. Hence + $\partial_iL(\lambda)\geq \T{x_i}S_n^{-1}x_i$. + + Using the Sherman-Morrison formula, for all $k\geq 1$: + \begin{displaymath} + \T{x_i}S_k^{-1} x_i = \T{x_i}S_{k-1}^{-1}x_i + - \frac{(\T{x_i}S_{k-1}^{-1}x_k)^2}{1+\T{x_k}S_{k-1}^{-1}x_k} + \end{displaymath} + + By the Cauchy-Schwarz inequality: + \begin{displaymath} + (\T{x_i}S_{k-1}^{-1}x_k)^2 \leq \T{x_i}S_{k-1}^{-1}x_i\;\T{x_k}S_{k-1}^{-1}x_k + \end{displaymath} + + Hence: + \begin{displaymath} + \T{x_i}S_k^{-1} x_i \geq \T{x_i}S_{k-1}^{-1}x_i + - \T{x_i}S_{k-1}^{-1}x_i\frac{\T{x_k}S_{k-1}^{-1}x_k}{1+\T{x_k}S_{k-1}^{-1}x_k} + \end{displaymath} + + But $\T{x_k}S_{k-1}^{-1}x_k\leq 1$ and $\frac{a}{1+a}\leq \frac{1}{2}$ if + $0\leq a\leq 1$, so: + \begin{displaymath} + \T{x_i}S_{k}^{-1}x_i \geq \T{x_i}S_{k-1}^{-1}x_i + - \frac{1}{2}\T{x_i}S_{k-1}^{-1}x_i\geq \frac{\T{x_i}S_{k-1}^{-1}x_i}{2} + \end{displaymath} + + By induction: + \begin{displaymath} + \T{x_i}S_n^{-1} x_i \geq \frac{\T{x_i}x_i}{2^n} + \end{displaymath} + + Using that $\T{x_i}{x_i}\geq b$ concludes the proof of the left-hand side + of the lemma's inequality. +\end{proof} + +\begin{lemma}\label{lemma:proximity} +We have: +\begin{displaymath} + L^*_c - \alpha n\leq L^*_c(\alpha) \leq L^*_c +\end{displaymath} +In particular, $|L^*_c - L^*_c(\alpha)| \leq \alpha n$. +\end{lemma} + +\begin{proof} + $\alpha\mapsto L^*_c(\alpha)$ is a decreasing function as it is the + maximum value of the $L$ function over a set-decreasing domain, which gives + the rightmost inequality. + + Let $\mu^*, \nu^*, \xi^*$ be dual optimal for $(P_{c, \alpha})$, that is: + \begin{displaymath} + L^*_{c}(\alpha) = \max_\lambda \mathcal{L}_{c, \alpha}(\lambda, \mu^*, \nu^*, \xi^*) + \end{displaymath} + + Note that $\mathcal{L}_{c, \alpha}(\lambda, \mu^*, \nu^*, \xi^*) + = \mathcal{L}_{c}(\lambda, \mu^*, \nu^*, \xi^*) - \T{\alpha}\mu^*$ and that + for any $\lambda$ feasible for problem \eqref{eq:primal}, + $\mathcal{L}_{c}(\lambda, \mu^*, \nu^*, \xi^*) \geq L(\lambda)$. Hence, + \begin{displaymath} + L^*_{c}(\alpha) \geq \mathcal{L}_{c}(\lambda, \mu^*, \nu^*, \xi^*) - \T{\alpha}\mu^* + \end{displaymath} + for any $\lambda$ feasible for \eqref{eq:primal}. In particular, for $\lambda^*$ primal optimal for \eqref{eq:primal}: + \begin{equation}\label{eq:local-1} + L^*_{c}(\alpha) \geq L^*_c - \T{\alpha}\mu^* + \end{equation} + + Note that from the KKT conditions, we cannot have both $\mu_i^*$ and $\nu_i^*$ different from zero, hence: + \begin{displaymath} + \sum_{i=1}^n \mu_i^* = \sum_{i=1}^n \xi^*c_i - \partial_i L(\lambda^*) \leq \sum_{i=1}^n\xi^*c_i + \end{displaymath} + + Using the KKT conditions again, if $\lambda_i^*>\alpha$, $\xi^*c_i \leq + \partial_i L(\lambda^*)$. In particular, using + Lemma~\ref{lemma:derivative-bounds}, $\xi^*c_i\leq 1$. As a consequence, + $\T{\alpha}\mu^*\leq\alpha n$. This, in addition to \eqref{eq:local-1} + gives the left-hand side of the lemma's inequality. +\end{proof} + +\begin{lemma}\label{lemma:monotonicity} + If $c'$ = $(c_i', c_{-i})$, with $c_i'\leq c_i - \delta$, we have: + \begin{displaymath} + L^*_{c'}(\alpha) \geq L^*_c(\alpha) + \frac{\alpha\delta b}{2^n} + \end{displaymath} +\end{lemma} + +\begin{proof} + Let $\mu^*, \nu^*, \xi^*$ be dual optimal for $(P_{c', \alpha})$. Noting that, $\mathcal{L}_{c', \alpha}(\lambda, \mu^*, \nu^*, \xi^*) \geq + \mathcal{L}_{c, \alpha}(\lambda, \mu^*, \nu^*, \xi^*) + \lambda_i\xi^*\delta$, we get similarly to Lemma~\ref{lemma:proximity}: + \begin{displaymath} + L^*_{c'}(\alpha) \geq L(\lambda) + \lambda_i\xi^*\delta + \end{displaymath} + for any $\lambda$ feasible for \eqref{eq:perturbed-primal}. In particular, for $\lambda^*$ primal optimal for \eqref{eq:perturbed-primal}: + \begin{displaymath} + L^*_{c'}(\alpha) \geq L^*_{c}(\alpha) + \alpha\xi^*\delta + \end{displaymath} + since $\lambda_i^*\geq \alpha$. + + Using the KKT conditions for $(P_{c', \alpha})$, we can write: + \begin{displaymath} + \xi^* = \inf_{i:\lambda^{'*}_i>\alpha} \frac{\T{x_i}S(\lambda^{'*})^{-1}x_i}{c_i'} + \end{displaymath} + with $\lambda^{'*}$ optimal for $(P_{c', \alpha})$. Since $c_i'\leq 1$, using Lemma~\ref{lemma:derivative-bounds}, we get that $\xi^*\geq \frac{b}{2^n}$, which concludes the proof. +\end{proof} + +\begin{proposition} + Let $\delta\in(0,1]$. For any $\varepsilon\in(0,1]$, there exists + a routine which computes an approximate solution $\tilde{L}^*_c$ to + \eqref{eq:primal} such that: + \begin{enumerate} + \item $|\tilde{L}^*_c - L^*_c| \leq \varepsilon$ + \item for all $c' = (c_i', c_{-i})$ with $c_i'\leq c_i-\delta$, $\tilde{L}^*_c \leq \tilde{L}^*_{c'}$ + \item the routine's running time is $O\big(poly(n, d, \log\log\frac{1}{b\varepsilon\delta})\big)$ + \end{enumerate} +\end{proposition} + +\begin{proof} +Let $\varepsilon$ in $(0, 1]$. The routine works as follows: set $\alpha\defeq +\varepsilon(\delta + n)^{-1}$ and return an approximation $\tilde{L}^*_c$ of +$L^*_c(\alpha)$ with an accuracy $\frac{1}{2^{n+1}}\alpha\delta b$ computed by +a standard convex optimization algorithm + +\begin{enumerate} + \item using Lemma~\ref{lemma:proximity}: +\begin{displaymath} + |\tilde{L}^*_c - L^*_c| \leq |\tilde{L}^*_c - L^*_c(\alpha)| + |L^*_c(\alpha) - L^*_c| + \leq \alpha\delta + \alpha n = \varepsilon +\end{displaymath} + +\item let $c' = (c_i', c_{-i})$ with $c_i'\leq c_i-\delta$, then: +\begin{displaymath} + \tilde{L}^*_{c'} \geq L^*_{c'} - \frac{\alpha\delta b}{2^{n+1}} + \geq L^*_c + \frac{\alpha\delta b}{2^{n+1}} + \geq \tilde{L}^*_c +\end{displaymath} +where the first and inequality come from the accuracy of the approximation, and the inner inequality follows from Lemma~\ref{lemma:monotonicity}. + +\item the accuracy of the approximation $\tilde{L}^*_c$ is: +\begin{displaymath} + A\defeq\frac{\varepsilon\delta b}{2^{n+1}(\delta + n)} +\end{displaymath} +\sloppy +hence, the standard convex optimization algorithm runs in time $O(poly(n, d,\log\log A^{-1}))$. Note that: +\begin{displaymath} + \log\log A^{-1} = O\bigg(\log n\; \log\log\frac{1}{\epsilon\delta b}\bigg) +\end{displaymath} +which yields the wanted running time for the routing.\qedhere +\end{enumerate} +\end{proof} + +\section{Previous Junk} +\paragraph{Primal reformulation} +We define $S(\lambda) \defeq I_d + \sum_{i=1}^n \lambda_i x_i x_i^T$. We can +reformulate the primal: +\begin{align} + \mathrm{maximize}\quad & \log\det W\\ + \textrm{subject to}\quad & W = S(\lambda)\;;\;c^T\lambda \leq 1 \;;\; 0\leq\lambda\leq \mathbf{1} +\end{align} + +\paragraph{Dual} +\begin{align} + \mathrm{minimize}\quad & \log\det\big(N^{-1}\big) + \mathrm{Tr}\, N - n + \sum_{i=1}^n x_i^T N x_i \\ + & - \Bigg(\min_{1\leq i\leq n} \frac{x_i^TNx_i}{c_i}\Bigg)\Big(\sum_{i=1}^n c_i - 1\Big) \\ + \textrm{subject to}\quad & N\in \mathcal{S}_n^{++}(\mathbf{R}) +\end{align} + +Let us define: +\begin{equation} +\begin{split} + f(N, c) \defeq \log\det\big(N^{-1}\big) + \mathrm{Tr}\, N - n + \sum_{i=1}^n x_i^T N x_i \\- \Bigg(\min_{1\leq i\leq n} \frac{x_i^TNx_i}{c_i}\Bigg)\Big(\sum_{i=1}^n c_i - 1\Big) +\end{split} +\end{equation} + +So that the dual reads: +\begin{align} + \mathrm{minimize}\quad & f(N, c)\\ + \textrm{subject to}\quad & N\in \mathcal{S}_n^{++}(\mathbf{R}) +\end{align} + + +\paragraph{Duality} By duality $L^*(c)$ is equal to the optimal value of the dual optimization +problem: + +\begin{displaymath} + L^*(c) = \inf_{N\in\mathcal{S}_n(\mathbf{R})} f(N, c) = f(N^*, c) = \log\det S(\lambda^*) +\end{displaymath} + +\paragraph{KKT conditions} +Let $\xi$ denote the dual variable associated with the constraint $c^T\lambda +\leq B$. If $\xi^*$ is dual optimal and $\lambda^*$ primal optimal: +\begin{equation} + \mathrm{if}\; 0 < \lambda^*_i < 1,\; \frac{x_i^T + A(\lambda^*)^{-1}x_i}{c_i} = \xi^* +\end{equation} +\begin{equation} + \mathrm{if}\; \lambda^*_i = 1,\; \frac{x_i^T A(\lambda^*)^{-1}x_i}{c_i} > \xi^* +\end{equation} +\begin{equation} + \mathrm{if}\; \lambda^*_i = 0,\; \frac{x_i^T A(\lambda^*)^{-1}x_i}{c_i} < \xi^* +\end{equation} + +Furthermore, if $W^*\in\mathcal{M}_n(\mathbf{R})$ is primal optimal and +$N^*\in\mathcal{S}_n(\mathbf{R})$ dual optimal: + +\begin{equation} + W^* = S(\lambda^*)\;;\; N^* = (W^*)^{-1}\;;\; 0\leq\lambda^*\leq \mathbf{1} +\end{equation} + +In particular $N^* = S(\lambda^*)^{-1}$ and: +\begin{equation} + S(\mathbf{1})^{-1} \leq N^* \leq S(0)^{-1} = I_d +\end{equation} + + +\paragraph{Sensitivity analysis, first flavor} + +Let $i$ such that $0 < \lambda_i < 1$ and $c' = (c_i + \delta, c_{-i})$, we can +prove: +\begin{displaymath} +L^*(c') \leq L^*(c) - \xi^*\lambda_i^*\delta +\end{displaymath} +where $\lambda^*$ and $\xi^*$ are respectively primal and dual optimal for +$P_c$. Using the KKT conditions and \eqref{lemma:derivative-bounds}, we can bound +$\xi^*$ and get: +\begin{equation}\label{eq:sensitivity} + L^*(c) \geq L^*(c') + \delta\lambda_i^* \frac{x_i^T A(\mathbf{1})^{-1} + x_i}{c_i} +\end{equation} + + +However, note that $\lambda_i^*$ can be arbitrarily small, so even a change of +$\delta$ in the cost can lead to no variation of the optimal value. +Intuitively, it does not harm if an element $i$ that has only a small fraction +of itself in the solution sees its cost reduced. + +The problem seems to come from the fact that we can have arbitrarily small +fractions of elements in the solution : this is clearly an artifact of looking +at a continuous relaxation of the problem, because in the real life, an element +is either in or out of the solution set. + +It is probably possible to prove that if we enforce the $\lambda_i$ to be +greater than some minimal fraction $\zeta$, then we do not lose to much in +terms of the optimal value (especially after rounding). Having $\lambda_i\geq +\zeta$ will allow us to prove that if $i$ changes its cost, then the optimal +value changes by some strictly positive constant depending only on $\zeta$ (and +$\delta$ of course). + +\paragraph{Sensitivity analysis, second flavor} +Let us now assume that some user $i$ reduces its cost by $\delta$ and define $c' = (c_i + \delta, c_{-i})$. Then we have: +\begin{align} + f(N, c') + & = f(N, c) + \Bigg(\min_{1\leq i\leq n} \frac{x_i^TNx_i}{c_i}\Bigg)\Bigg(\sum_{i=1}^n c_i - 1\Bigg) - \Bigg(\min_{1\leq i\leq n} \frac{x_i^TNx_i}{c_i'}\Bigg)\Bigg(\sum_{i=1}^n c_i' - 1\Bigg)\\ + & = f(N, c) + \delta\min_{1\leq i\leq n} \frac{x_i^TNx_i}{c_i} + \Bigg(\sum_{i=1}^n c_i - 1\Bigg) \Bigg(\Bigg(\min_{1\leq i\leq n} \frac{x_i^TNx_i}{c_i}\Bigg) - \Bigg(\min_{1\leq i\leq n} \frac{x_i^TNx_i}{c_i'}\Bigg)\Bigg) +\end{align} + +\textbf{Problem:} we have no control over the third term of the last sum (the +min difference). Otherwise, when we can ignore this term (for example when the +user who changes his cost is not the one at which the min is reached), we get: + +\begin{equation} +L^*(c') \geq L^*(c) + \delta\min_{1\leq i\leq n} \frac{x_i^TNx_i}{c_i} +\end{equation} + +\paragraph{Junk:} +\begin{align*} + \mathrm{minimize}\quad & \log\det\big(N^{-1}\big) + \mathrm{Tr}\, N - n + \sum_{i=1}^n \nu_i + \xi \\ + \textrm{subject to}\quad & \nu \geq 0\; ;\; \xi \geq 0 \; ; \; N\in \mathcal{S}_n^{++}(\mathbf{R})\; ;\\ + & \forall\; 1\leq i \leq n, \; \nu_i + \xi c_i = x_i^T N x_i +\end{align*} + +\begin{align*} + \mathrm{minimize}\quad & \log\det\big(N^{-1}\big) + \mathrm{Tr}\, N - n + \sum_{i=1}^n x_i^T N x_i - \xi\Big(\sum_{i=1}^n c_i - 1\Big) \\ + \textrm{subject to}\quad & \xi \geq 0 \; ; \; N\in \mathcal{S}_n^{++}(\mathbf{R})\; ;\\ + & \forall\;1\leq i \leq n, \; \frac{x_i^T N x_i}{c_i} \geq \xi +\end{align*} + +\end{document} |
