diff options
Diffstat (limited to 'intro.tex')
| -rwxr-xr-x | intro.tex | 6 |
1 files changed, 3 insertions, 3 deletions
@@ -23,15 +23,15 @@ However, we are not aware of a principled study of this setting from a strategic % When subjects are strategic, they may have an incentive to misreport their cost, leading to the need for a sophisticated choice of experiments and payments. Arguably, user incentiviation is of particular pertinence due to the extent of statistical analysis over user data on the Internet. %, which has led to the rise of several different research efforts in studying data markets \cite{...}. -Our contributions are as follows. \emph{(1)} We initiate the study of experimental design in the presence of a budget and strategic subjects. +Our contributions are as follows. \emph{First}, we initiate the study of experimental design in the presence of a budget and strategic subjects. %formulate the problem of experimental design subject to a given budget, in the presence of strategic agents who may lie about their costs. %In particular, we focus on linear regression. This is naturally viewed as a budget feasible mechanism design problem, in which the objective function %is sophisticated and %is related to the covariance of the $x_i$'s. In particular, we formulate the {\em Experimental Design Problem} (\SEDP) as follows: the experimenter \E\ wishes to find a set $S$ of subjects to maximize -\begin{align}V(S) = \log\det\Big(I_d+\sum_{i\in S}x_i\T{x_i}\Big) \label{obj}\end{align} +\begin{align}V(S) = \log\det\Big(I_d+\textstyle\sum_{i\in S}x_i\T{x_i}\Big) \label{obj}\end{align} subject to a budget constraint $\sum_{i\in S}c_i\leq B$, where $B$ is \E's budget. When subjects are strategic, the above problem can be naturally approached as a \emph{budget feasible mechanism design} problem, as introduced by \citeN{singer-mechanisms}. %, and other {\em strategic constraints} we don't list here. -The objective function, which is the key, is formally obtained by optimizing the information gain in $\beta$ when the latter is learned through ridge regression, and is related to the so-called $D$-optimality criterion~\cite{pukelsheim2006optimal,atkinson2007optimum}. \emph{(2)} We present a polynomial time mechanism scheme for \SEDP{} that is approximately truthful and yields a constant factor ($\approx 12.98$) approximation to the optimal value of \eqref{obj}. %In particular, for any small $\delta>0$ and $\varepsilon>0$, we can construct a $(12.98\,,\varepsilon)$-approximate mechanism that is $\delta$-truthful and runs in polynomial time in both $n$ and $\log\log\frac{B}{\epsilon\delta}$. +The objective function, which is the key, is formally obtained by optimizing the information gain in $\beta$ when the latter is learned through ridge regression, and is related to the so-called $D$-optimality criterion~\cite{pukelsheim2006optimal,atkinson2007optimum}. \emph{Second}, we present a polynomial time mechanism scheme for \SEDP{} that is approximately truthful and yields a constant factor ($\approx 12.98$) approximation to the optimal value of \eqref{obj}. %In particular, for any small $\delta>0$ and $\varepsilon>0$, we can construct a $(12.98\,,\varepsilon)$-approximate mechanism that is $\delta$-truthful and runs in polynomial time in both $n$ and $\log\log\frac{B}{\epsilon\delta}$. In contrast to this, we show that no truthful, budget-feasible mechanisms are possible for \SEDP{} within a factor 2 approximation. We note that the objective \eqref{obj} is submodular. Using this fact, applying previous results on budget feasible mechanism design under general submodular objectives~\cite{singer-mechanisms,chen} would yield either a deterministic, truthful, constant-approximation mechanism that requires exponential time, or a non-determi\-nis\-tic, (universally) truthful, poly-time mechanism that yields a constant approximation ratio only \emph{in expectation} (\emph{i.e.}, its approximation guarantee for a given instance may in fact be unbounded). |
