summaryrefslogtreecommitdiffstats
path: root/main.tex
diff options
context:
space:
mode:
Diffstat (limited to 'main.tex')
-rw-r--r--main.tex67
1 files changed, 30 insertions, 37 deletions
diff --git a/main.tex b/main.tex
index a91e67e..657454d 100644
--- a/main.tex
+++ b/main.tex
@@ -128,7 +128,7 @@ be to prove that $OPT(L_\mathcal{N}, B)$ is close to $V(S_G)$. To do so, our
main technical contribution is to prove that $L_\mathcal{N}$ has a bounded
approximation ratio to the value function $V$ (Lemma~\ref{lemma:relaxation}).
-The resulting mechanism for \EDP{} is presented in Algorithm~\ref{mechanism}. The constant $C$ is an absolute constant, that we determine in Section~\ref{...} (See \eqref{...}).
+The resulting mechanism for \EDP{} is presented in Algorithm~\ref{mechanism}. The constant $C$ is an absolute constant, that we determine in Section~\ref{sec:proofofmainthm} (see \eqref{eq:C}).
\begin{algorithm}
\caption{Mechanism for \EDP{}}\label{mechanism}
\begin{algorithmic}[1]
@@ -176,7 +176,7 @@ There is no $2$-approximate, truthful, budget feasible, individionally rational
Suppose, for contradiction, that such a mechanism exists. Consider two experiments with dimension $d=2$, such that $x_1 = e_1=[1 ,0]$, $x_2=e_2=[0,1]$ and $c_1=c_2=B/2+\epsilon$. Then, one of the two experiments, say, $x_1$, must be in the set selected by the mechanism, otherwise the ratio is unbounded, a contradiction. If $x_1$ lowers its value to $B/2-\epsilon$, by monotonicity it remains in the solution; by threshold payment, it is paid at least $B/2+\epsilon$. So $x_2$ is not included in the solution by budget feasibility and individual rationality: hence, the selected set attains a value $\log2$, while the optimal value is $2\log 2$.
\end{proof}
-\subsection{Proof of Theorem~\ref{thm:main}}
+\subsection{Proof of Theorem~\ref{thm:main}}\label{sec:proofofmainthm}
\stratis{individual rationality???}
@@ -274,25 +274,23 @@ $L_\mathcal{N}$.
%\end{displaymath}
\end{lemma}
Its proof is our main technical contribution, and can be found in Section \ref{sec:relaxation}.
-\begin{lemma}\label{lemma:approx}
+Using this lemma, we can complete the proof of Theorem~\ref{thm:main} by showing that, %\begin{lemma}\label{lemma:approx}
%C_{\textrm{max}} = \max\left(1+C,\frac{3e}{e-1}\left( 1 + \frac{8e}{C
%(e-1) -10e +2}\right)\right)
- For any $\varepsilon > 0$, if $L(x^*)$ has been computed to a precision
+ for any $\varepsilon > 0$, if $L(x^*)$ has been computed to a precision
$\varepsilon$, then the set $S^*$ allocated by the mechanism is such that:
- \begin{displaymath}
+ \begin{align}
OPT(V,\mathcal{N}, B)
- \leq \frac{14e-3 + \sqrt{160e^2-48e + 9}}{2(e-1)} V(S^*)+ \varepsilon
- \end{displaymath}
-\end{lemma}
-
-\begin{proof}
- Let $x^*\in [0,1]^{n-1}$ be the true maximizer of $L_{\mathcal{N}\setminus\{i^*\}}$ subject to the budget constraints. Assume that on line 2 of algorithm~\ref{mechanism}, a quantity
+ \leq \frac{14e\!-\!3 + \sqrt{160e^2\!-\!48e\!+\!9}}{2(e\!-\!1)} V(S^*)\!+\! \varepsilon \label{approxbound}
+ \end{align}
+%\end{lemma}
+ To see this, let $x^*\in [0,1]^{n-1}$ be the true maximizer of $L_{\mathcal{N}\setminus\{i^*\}}$ subject to the budget constraints. Assume that on line 2 of algorithm~\ref{mechanism}, a quantity
$\tilde{L}$ such that $\tilde{L}-\varepsilon\leq L_{\mathcal{N}\setminus {i^*}}(x^*) \leq
\tilde{L}+\varepsilon$ has been computed (lemma~\ref{lemma:complexity}
states that this is computed in time within our complexity guarantee).
If the condition on line 3 of the algorithm holds, then:
\begin{displaymath}
- V(i^*) \geq \frac{1}{C}L(x^*)-\frac{\varepsilon}{C} \geq
+ V(i^*) \geq \frac{1}{C}L_{N\setminus \{i\}}(x^*)-\frac{\varepsilon}{C} \geq
\frac{1}{C}OPT(V,\mathcal{N}\setminus\{i\}, B) -\frac{\varepsilon}{C}
\end{displaymath}
as $L$ is a fractional relaxation of $V$ on $\mathcal{N}\setminus \{i^*\}$. Also,
@@ -303,52 +301,47 @@ Its proof is our main technical contribution, and can be found in Section \ref{s
\begin{equation}\label{eq:bound1}
OPT(V,\mathcal{N}, B)\leq (1+C)V(i^*) + \varepsilon
\end{equation}
- If the condition of the algorithm does not hold, by applying Lemmas
- \ref{lemma:relaxation} and \ref{lemma:greedy-bound}:
+ Note that $OPT(L_{\mathcal{N}\setminus\{i^*\}},B)\leq OPT(L_{\mathcal{N}},B)$. If the condition does not hold,
+ from Lemmas \ref{lemma:relaxation} and \ref{lemma:greedy-bound}:
\begin{align*}
- V(i^*) & \leq \frac{1}{C}L(x^*) + \frac{\varepsilon}{C}\leq \frac{1}{C}
+ V(i^*) & \stackrel{}\leq \frac{1}{C}L_{\mathcal{N}}(x^*) + \frac{\varepsilon}{C}\leq \frac{1}{C}
\big(4 OPT(V,\mathcal{N}, B) + 2 V(i^*)\big) + \frac{\varepsilon}{C}\\
& \leq \frac{1}{C}\left(\frac{4e}{e-1}\big(3 V(S_G)
+ 2 V(i^*)\big)
+ 2 V(i^*)\right) + \frac{\varepsilon}{C}
\end{align*}
-
- Thus:
+ Thus, if $C$ is such that $C(e-1) -10e +2 > 0$,
\begin{align*}
V(i^*) \leq \frac{12e}{C(e-1)- 10e + 2} V(S_G)
+ \frac{(e-1)\varepsilon}{C(e-1)- 10e + 2}
\end{align*}
-
- Finally, using again lemma~\ref{lemma:greedy-bound}, we get:
+ Finally, using again Lemma~\ref{lemma:greedy-bound}, we get:
\begin{multline}\label{eq:bound2}
OPT(V, \mathcal{N}, B) \leq \frac{3e}{e-1}\left( 1 + \frac{8e}{C
(e-1) -10e +2}\right) V(S_G)\\
+\frac{2e\varepsilon}{C(e-1)- 10e + 2}
\end{multline}
-
- Looking at \eqref{eq:bound1} and \eqref{eq:bound2}, we see that the optimal
- value for $C$ is:
+ To minimize the coefficients of $V_{i^*}$ and $V(S_G)$ in \eqref{eq:bound1} and \eqref{eq:bound2} respectively,
+ we wish to chose for $C=C^*$ such that:
\begin{displaymath}
C^* = \argmin_C
\max\left(1+C,\frac{3e}{e-1}\left( 1 + \frac{8e}{C (e-1) -10e +2}
\right)\right)
\end{displaymath}
-
This equation has two solutions. Only one of those is such that:
- \begin{displaymath}
- C(e-1) -10e +2 \geq 0
- \end{displaymath}
- which is needed in the above derivation. This solution is:
- \begin{displaymath}
- C^* = \frac{12e-1 + \sqrt{160e^2-48e + 9}}{2(e-1)}
- \end{displaymath}
- For this solution we have:
- \begin{displaymath}
- \frac{2e\varepsilon}{C(e-1)- 10e + 2}\leq 1
- \end{displaymath}
- Plugging the expression of $C^*$ in \eqref{eq:bound1} and \eqref{eq:bound2}
- gives the approximation ratio in the lemma's statement.
-\end{proof}
+ $ C(e-1) -10e +2 \geq 0$.
+ %which is needed in the above derivation.
+This solution is:
+ \begin{align}
+ C^* = \frac{12e-1 + \sqrt{160e^2-48e + 9}}{2(e-1)} \label{eq:c}
+ \end{align}
+ For this solution,
+ % \begin{displaymath}
+ $ \frac{2e\varepsilon}{C^*(e-1)- 10e + 2}\leq \varepsilon. $
+ % \end{displaymath}
+ Placing the expression of $C^*$ in \eqref{eq:bound1} and \eqref{eq:bound2}
+ gives the approximation ratio in \eqref{approxbound}, and concludes the proof of Theorem~\ref{thm:main}.\hspace*{\stretch{1}}\qed
+%\end{proof}
\subsection{Proof of lemma \ref{lemma:relaxation}}\label{sec:relaxation}
Since $L_\mathcal{N}$ is a relaxation of the value function $V$, we have: