summaryrefslogtreecommitdiffstats
path: root/main.tex
diff options
context:
space:
mode:
Diffstat (limited to 'main.tex')
-rw-r--r--main.tex12
1 files changed, 4 insertions, 8 deletions
diff --git a/main.tex b/main.tex
index 9d840da..a91e67e 100644
--- a/main.tex
+++ b/main.tex
@@ -289,25 +289,21 @@ Its proof is our main technical contribution, and can be found in Section \ref{s
Let $x^*\in [0,1]^{n-1}$ be the true maximizer of $L_{\mathcal{N}\setminus\{i^*\}}$ subject to the budget constraints. Assume that on line 2 of algorithm~\ref{mechanism}, a quantity
$\tilde{L}$ such that $\tilde{L}-\varepsilon\leq L_{\mathcal{N}\setminus {i^*}}(x^*) \leq
\tilde{L}+\varepsilon$ has been computed (lemma~\ref{lemma:complexity}
- states that this can be done in a time within our complexity guarantee).
-
+ states that this is computed in time within our complexity guarantee).
If the condition on line 3 of the algorithm holds, then:
\begin{displaymath}
V(i^*) \geq \frac{1}{C}L(x^*)-\frac{\varepsilon}{C} \geq
- \frac{1}{C}OPT(V,\mathcal{N}\setminus\{i\}, B)
+ \frac{1}{C}OPT(V,\mathcal{N}\setminus\{i\}, B) -\frac{\varepsilon}{C}
\end{displaymath}
-
- But:
+ as $L$ is a fractional relaxation of $V$ on $\mathcal{N}\setminus \{i^*\}$. Also,
\begin{displaymath}
OPT(V,\mathcal{N},B) \leq OPT(V,\mathcal{N}\setminus\{i\}, B) + V(i^*)
\end{displaymath}
-
Hence:
\begin{equation}\label{eq:bound1}
OPT(V,\mathcal{N}, B)\leq (1+C)V(i^*) + \varepsilon
\end{equation}
-
- If the condition of the algorithm does not hold, by applying lemmas
+ If the condition of the algorithm does not hold, by applying Lemmas
\ref{lemma:relaxation} and \ref{lemma:greedy-bound}:
\begin{align*}
V(i^*) & \leq \frac{1}{C}L(x^*) + \frac{\varepsilon}{C}\leq \frac{1}{C}