summaryrefslogtreecommitdiffstats
path: root/main.tex
diff options
context:
space:
mode:
Diffstat (limited to 'main.tex')
-rw-r--r--main.tex29
1 files changed, 17 insertions, 12 deletions
diff --git a/main.tex b/main.tex
index 2986eb1..7e9fe02 100644
--- a/main.tex
+++ b/main.tex
@@ -2,7 +2,7 @@
In this section we present our mechanism for \SEDP. Prior approaches to budget
feasible mechanisms for sudmodular maximization build upon the full information
-case which we discuss first.
+case, which we discuss first.
\subsection{Submodular Maximization in the Full Information Case}
@@ -16,8 +16,8 @@ element $i$ to be included is the one which maximizes the
i = \argmax_{j\in\mathcal{N}\setminus S}\frac{V(S\cup\{i\}) - V(S)}{c_i}\label{greedy}
\end{align}
This is repeated until the sum of costs of elements in $S$ reaches the budget
-constraint $B$. Denote by $S_G$ the set constructed by this heuristic and by
-$i^* = \argmax_{i\in\mathcal{N}} V(\{i\})$, then the following lemma holds:
+constraint $B$. Denote by $S_G$ the set constructed by this heuristic and let
+$i^*$ be the element of maximum value. Then, the following lemma holds:
\begin{lemma}~\cite{chen}\label{lemma:greedy-bound}
Let $S_G$ be the set computed by the greedy algorithm and let
$i^* = \argmax_{i\in\mathcal{N}} V(\{i\}).$ We have:
@@ -25,6 +25,7 @@ $i^* = \argmax_{i\in\mathcal{N}} V(\{i\}).$ We have:
OPT \leq \frac{e}{e-1}\big( 3 V(S_G) + 2 V(i^*)\big).
\end{displaymath}
\end{lemma}
+
This lemma immediately implies that the following algorithm:
\begin{equation}\label{eq:max-algorithm}
\textbf{if}\; V(\{i^*\}) \geq V(S_G)\; \textbf{return}\; \{i^*\}
@@ -45,10 +46,10 @@ full-information case after removing $i^*$ from the set $\mathcal{N}$:
OPT_{-i^*} \defeq \max_{S\subseteq\mathcal{N}\setminus\{i^*\}} \Big\{V(S) \;\Big| \;
\sum_{i\in S}c_i\leq B\Big\}
\end{equation}
-\citeN{singer-mechanisms} and \citeN{chen} prove that using the following
+\citeN{singer-mechanisms} and \citeN{chen} prove that the following
allocation:
\begin{displaymath}
-\textbf{if}\; V(\{i^*\}) \geq C. OPT_{-i^*}\; \textbf{return}\; \{i^*\}
+\textbf{if}\; V(\{i^*\}) \geq C \cdot OPT_{-i^*}\; \textbf{return}\; \{i^*\}
\;\textbf{else return}\; S_G
\end{displaymath}
yields a 8.34-approximation mechanism for an appropriate $C$ (see also
@@ -79,9 +80,9 @@ denotes the indicator vector of $S$. The optimization program
\leq B\right\}\label{relax}
\end{align}
-One of the main technical contribution of \citeN{chen} and
-\citeN{singer-influence} is to come up with appropriate relaxations for
-\textsc{Knapsack} and \textsc{Coverage} respectively.
+One of the main technical contributions of \citeN{chen} and
+\citeN{singer-influence} is to come up with appropriate such relaxations for
+\textsc{Knapsack} and \textsc{Coverage}, respectively.
\subsection{Our Approach}
@@ -98,7 +99,8 @@ method for self-concordant functions in \cite{boyd2004convex}, shows that
finding the maximum of $L$ to any precision $\varepsilon$ can be done in
$O(\log\log\varepsilon^{-1})$ iterations. Being the solution to a maximization
problem, $L^*$ satisfies the required monotonicity property. The main challenge
-will be to prove that $OPT'_{-i^*}$, for our relaxation $L$, is close to $OPT$.
+will be to prove that $OPT'_{-i^*}$, for our relaxation $L$, is close to
+$OPT_{-i^*}$.
\begin{algorithm}[t]
\caption{Mechanism for \SEDP{}}\label{mechanism}
@@ -138,9 +140,10 @@ be found in~\cite{singer-mechanisms}.
We can now state our main result:
\begin{theorem}\label{thm:main}
\sloppy
- The allocation described in Algorithm~\ref{mechanism}, along with threshold payments, is truthful, individually rational
- and budget feasible. Furthermore, for any $\varepsilon>0$, the mechanism
- runs in time $O\left(\text{poly}(n, d,
+ The allocation described in Algorithm~\ref{mechanism}, along with threshold
+ payments, is truthful, individually rational and budget feasible.
+ Furthermore, there exists an absolute constant $C$ such that, for any
+ $\varepsilon>0$, the mechanism runs in time $O\left(\text{poly}(n, d,
\log\log \varepsilon^{-1})\right)$ and returns a set $S^*$ such that:
\begin{align*}
OPT
@@ -148,6 +151,8 @@ We can now state our main result:
\varepsilon\\
& \simeq 12.98V(S^*) + \varepsilon
\end{align*}
+ The value of the constant $C$ is given by \eqref{eq:constant} in
+ Section~\ref{sec:proofofmainthm}.
\end{theorem}
\fussy