diff options
Diffstat (limited to 'main.tex')
| -rw-r--r-- | main.tex | 16 |
1 files changed, 1 insertions, 15 deletions
@@ -1,19 +1,5 @@ -\subsection{D-Optimality Criterion} -Ideally, motivated by the $D$-optimality criterion, we would like to design a mechanism that maximizes \eqref{dcrit} within a good approximation ratio. As \eqref{dcrit} may take arbitrarily small negative values, to define a meaningful approximation we consider the (equivalent) maximization of $V(S) = f(\det\T{X_S}X_S )$, for some strictly increasing, on-to function $f:\reals_+\to\reals_+$. However, the following lower bound implies that such an optimization goal cannot be attained under the costraints of truthfulness, budget feasibility, and individional rationallity. - -\begin{lemma} -For any $M>1$, there is no $M$-approximate, truthful, budget feasible, individionally rational mechanism for budget feasible experiment design with value fuction $V(S) = \det{\T{X_S}X_S}$. -\end{lemma} -\begin{proof} -\input{proof_of_lower_bound1} -\end{proof} - -This negative result motivates us to study the following modified objective: -\begin{align}V(S) = \log\det(I_d+\T{X_S}X_S), \label{modified}\end{align} where $I_d\in \reals^{d\times d}$ is the identity matrix. -One possible interpretation of \eqref{modified} is that, prior to the auction, the experimenter has free access to $d$ experiments whose features form an ortho-normal basis in $\reals^d$. However, \eqref{modified} can also be motivated in the context of \emph{Bayesian experimental design} \cite{chaloner1995bayesian}. In short, the objective \eqref{modified} arises naturally when the experimenter retrieves the model $\beta$ through \emph{ridge regression}, rather than the linear regression \eqref{leastsquares} over the observed data; we explore this connection in Section~\ref{sec:bed}. From a practical standpoint, \eqref{modified} is a good approximation of \eqref{dcrit} when the number of experiments is large. Crucially, \eqref{modified} is submodular and satifies $V(\emptyset) = 0$, allowing us to use the extensive machinery for the optimization of submodular functions, as well as recent results in the context of budget feasible auctions. - -\subsection{Truthful, Constant Approximation Mechanism} +%\subsection{Truthful, Constant Approximation Mechanism} In this section we present a mechanism for \EDP. Previous works on maximizing submodular functions \cite{nemhauser, sviridenko-submodular} and designing |
