summaryrefslogtreecommitdiffstats
path: root/main.tex
diff options
context:
space:
mode:
Diffstat (limited to 'main.tex')
-rw-r--r--main.tex228
1 files changed, 115 insertions, 113 deletions
diff --git a/main.tex b/main.tex
index c79ff88..7faec7e 100644
--- a/main.tex
+++ b/main.tex
@@ -31,7 +31,7 @@ Let $S_G$ be the set computed by the greedy algorithm and define $i^*$:
\end{displaymath}
then the following inequality holds:
\begin{displaymath}
-OPT(V,\mathcal{N},B) \leq \frac{e}{e-1}\big( 3 V(S_G) + 2 V(i^*)\big).
+OPT \leq \frac{e}{e-1}\big( 3 V(S_G) + 2 V(i^*)\big).
\end{displaymath}
\end{lemma}
@@ -56,8 +56,8 @@ overall polynomial complexity for the allocation algorithm.
\sloppy
When the underlying
full information problem \eqref{eq:non-strategic} can be solved in
-polynomial time, Chen et al. \cite{chen} prove that $OPT(V,\mathcal{N}\setminus\{i^*\},B)$ can play the role of this quantity: that is, allocating to $i^*$ when
-$V(i^*) \geq C\cdot OPT(V,\mathcal{N}\setminus\{i^*\},B)$ (for some constant $C$)
+polynomial time, Chen et al. \cite{chen} prove that $OPT_{-i^*}$, the optimal solution to \eqref{eq:non-strategic} when $i^*$ is excluded from set $\mathcal{N}$, can play the role of this quantity: that is, allocating to $i^*$ when
+$V(i^*) \geq C\cdot OPT_{-i^*}$ (for some constant $C$)
and to $S_G$ otherwise yields a 8.34-approximation mechanism. However, this is not a poly-time mechanism when the underlying problem is NP hard (unless P=NP), as is the case for \EDP.
\fussy
@@ -65,26 +65,26 @@ For NP-hard
problems, Chen et al.~\cite{chen} %for \textsc{Knapsack} and Singer
%\cite{singer-influence} for \textsc{Coverage} instead
propose comparing
-$V(i^*)$ to %$OPT(R_{\mathcal{N}\setminus\{i\}}, B)$, where $R_\mathcal{N}$ denotes
+$V(i^*)$ to %$OPT(R_{\mathcal{N}\setminus\{i\}}, B)$, where $R$ denotes
the optimal value of a \emph{fractional relaxation} of the function $V$ over the set
-$\mathcal{N}$. A fuction $R_\mathcal{N}:[0, 1]^{n}\to\reals_+$ defined on the hypercube $[0, 1]^{n}$ is a fractional relaxation of $V$
-over the set $\mathcal{N}$ if %(a) $R_\mathcal{N}$ is a function defined on the hypercube $[0, 1]^{n}$ and (b)
- $R_\mathcal{N}(\mathbf{1}_S) = V(S)$ for all $S\subseteq\mathcal{N}$, where
+$\mathcal{N}$. A fuction $R:[0, 1]^{n}\to\reals_+$ defined on the hypercube $[0, 1]^{n}$ is a fractional relaxation of $V$
+over the set $\mathcal{N}$ if %(a) $R$ is a function defined on the hypercube $[0, 1]^{n}$ and (b)
+ $R(\mathbf{1}_S) = V(S)$ for all $S\subseteq\mathcal{N}$, where
$\mathbf{1}_S$ denotes the indicator vector of $S$. The optimization program
\eqref{eq:non-strategic} extends naturally to such relaxations:
\begin{align}
- OPT(R_\mathcal{N}, B) = \argmax_{\lambda\in[0, 1]^{n}}
- \left\{R_\mathcal{N}(\lambda) \mid \sum_{i=1}^{n} \lambda_i c_i
+ OPT' = \argmax_{\lambda\in[0, 1]^{n}}
+ \left\{R(\lambda) \mid \sum_{i=1}^{n} \lambda_i c_i
\leq B\right\}\label{relax}
\end{align}
-To attain truthful constant approximation mechanism for \textsc{Knapsack}, Chen \emph{et al.}~\cite{chen} substitute $OPT(R_\mathcal{N},B)$ for $OPT(V,\mathcal{N},B)$ in the above program, where $R_{\mathcal{N}}$ are relaxations of the \textsc{Knapsack} objectives.
+To attain truthful constant approximation mechanism for \textsc{Knapsack}, Chen \emph{et al.}~\cite{chen} substitute $OPT'_{-i^*}$ for $OPT_{-i^*}$ in the above program, where $R$ is a relaxation of the \textsc{Knapsack} objective.
Similarly, Singer~\cite{singer-influence} follows the same approach to obtain a mechanism for \textsc{Coverage}.
A relaxation which is commonly used, due to its well-behaved properties in the
context of maximizing submodular functions, is the \emph{multi-linear}
extension:
\begin{equation}\label{eq:multilinear}
- F_\mathcal{N}(\lambda)
+ F(\lambda)
= \mathbb{E}_{S\sim P_\mathcal{N}^\lambda}\left[V(S)\right]
= \sum_{S\subseteq\mathcal{N}} P_\mathcal{N}^\lambda(S) V(S)
\end{equation}
@@ -106,14 +106,14 @@ extension using the \emph{pipage rounding} method of Ageev and Sviridenko
Here, following these ideas, we introduce a relaxation specifically tailored to the value
function of \EDP. The multi-linear extension of \eqref{modified} can be written:
\begin{displaymath}
- F_\mathcal{N}(\lambda) = \mathbb{E}_{S\sim
+ F(\lambda) = \mathbb{E}_{S\sim
P_\mathcal{N}^\lambda}\Big[\log\det \big(I_d + \sum_{i\in S} x_i\T{x_i}\big) \Big].
\end{displaymath}
As in the case of \textsc{Coverage}, \eqref{relax} is not a convex optimization problem, and is not easy to solve directly. %As in ~\cite{singer-influence},
-We thus introduce an additional relaxation $L_{\mathcal{N}}$. Our relaxation follows naturally by swapping the expectation and the $\log\det$
+We thus introduce an additional relaxation $L$. Our relaxation follows naturally by swapping the expectation and the $\log\det$
in the above formula:
\begin{align}\label{eq:concave}
- L_\mathcal{N}(\lambda) & \defeq \log\det\Big(\mathbb{E}_{S\sim
+ L(\lambda) & \defeq \log\det\Big(\mathbb{E}_{S\sim
P_\mathcal{N}^\lambda}\big[\log\det (I_d + \sum_{i\in S} x_i\T{x_i})\big]\Big)\notag \\
&= \log\det\left(I_d + \sum_{i\in\mathcal{N}}
\lambda_i x_i\T{x_i}\right)
@@ -121,10 +121,10 @@ in the above formula:
This function is well-known to be concave and even self-concordant (see \emph{e.g.},
\cite{boyd2004convex}). In this case, the analysis of Newton's method for
self-concordant functions in \cite{boyd2004convex}, shows that it is possible
-to find the maximum of $L_\mathcal{N}$ to any precision $\varepsilon$ in
+to find the maximum of $L$ to any precision $\varepsilon$ in
a number of iterations $O(\log\log\varepsilon^{-1})$. The main challenge will
-be to prove that $OPT(L_\mathcal{N}, B)$ is close to $V(S_G)$. To do so, our
-main technical contribution is to prove that $L_\mathcal{N}$ has a bounded
+be to prove that $OPT'$, for the relaxation $R=L$, is close to $V(S_G)$. To do so, our
+main technical contribution is to prove that $L$ has a bounded
approximation ratio to the value function $V$ (Lemma~\ref{lemma:relaxation}).
\begin{algorithm}[!t]
@@ -132,10 +132,10 @@ approximation ratio to the value function $V$ (Lemma~\ref{lemma:relaxation}).
\begin{algorithmic}[1]
\State $\mathcal{N} \gets \mathcal{N}\setminus\{i\in\mathcal{N} : c_i > B\}$
\State $i^* \gets \argmax_{j\in\mathcal{N}}V(j)$
- \State $\xi \gets \argmax_{\lambda\in[0,1]^{n}} \{L_{\mathcal{N}\setminus\{i^*\}}(\lambda)
- \mid \sum_{i \in \mathcal{N}\setminus\{i^*\}}c_i\lambda_i\leq B\}$, with precision $\epsilon>0$
+ \State $\xi \gets \argmax_{\lambda\in[0,1]^{n}} \{L(\lambda)
+ \mid \lambda_{i^*}=0,\sum_{i \in \mathcal{N}\setminus\{i^*\}}c_i\lambda_i\leq B\}$
\Statex
- \If{$L_{\mathcal{N}\setminus\{i^*\}}(\xi) < C \cdot V(i^*)$} \label{c}
+ \If{$L(\xi) < C \cdot V(i^*)$} \label{c}
\State \textbf{return} $\{i^*\}$
\Else
\State $i \gets \argmax_{1\leq j\leq n}\frac{V(j)}{c_j}$
@@ -169,7 +169,7 @@ We can now state our main result:
has complexity $O\left(\text{poly}(n, d,
\log\log \varepsilon^{-1})\right)$ and returns a set $S^*$ such that:
\begin{align*}
- OPT(V,\mathcal{N}, B)
+ OPT
& \leq \frac{14e-3 + \sqrt{160e^2-48e + 9}}{2(e-1)} V(S^*)+
\varepsilon\\
& \simeq 19.68V(S^*) + \varepsilon
@@ -192,9 +192,9 @@ Suppose, for contradiction, that such a mechanism exists. Consider two experimen
We now present the proof of Theorem~\ref{thm:main}. Truthfulness and individual
rationality follows from monotonicity and threshold payments. Monotonicity and
budget feasibility follows from the analysis of Chen \emph{et al.} \cite{chen};
-we briefly restate the proofs for the sake of completeness.
+we briefly restate the proofs below for the sake of completeness.
Our proof of the approximation ratio and uses a bound on our concave relaxation
-$L_\mathcal{N}$ (Lemma~\ref{lemma:relaxation}). This is our main technical
+$L$ (Lemma~\ref{lemma:relaxation}). This is our main technical
contribution; the proof of this lemma can be found in Section~\ref{sec:relaxation}.
\begin{lemma}\label{lemma:monotone}
The mechanism is monotone.
@@ -203,7 +203,7 @@ The mechanism is monotone.
Consider an agent $i$ with cost $c_i$ that is
selected by the mechanism, and suppose that she reports
a cost $c_i'\leq c_i$ while all other costs stay the same.
- Suppose that when $i$ reports $c_i$, $L_{\mathcal{N}\setminus\{i^*\}}(\xi) \geq C V(i^*)$; then, as $s_i(c_i,c_{-i})=1$, $i\in S_G$.
+ Suppose that when $i$ reports $c_i$, $L(\xi) \geq C V(i^*)$; then, as $s_i(c_i,c_{-i})=1$, $i\in S_G$.
By reporting a cost $c_i'\leq c_i$, $i$ may be selected at an earlier iteration of the greedy algorithm.
%using the submodularity of $V$, we see that $i$ will satisfy the greedy
%selection rule:
@@ -220,17 +220,17 @@ The mechanism is monotone.
\frac{B}{2}\frac{V(S_i\cup\{i\})-V(S_i)}{V(S_i\cup\{i\})}
\leq \frac{B}{2}\frac{V(S_i'\cup\{i\})-V(S_i')}{V(S_i'\cup\{i\})}
\end{align*}
- by the monotonicity and submodularity of $V$. Hence $i\in S_G'$. As $L_{\mathcal{N}\setminus \{i^*\}}(\xi)$ is the optimal value of \eqref{relax} under relaxation $L_{\mathcal{N}}$, reducing the costs can only increase this value, so under $c'_i\leq c_i$ the greedy set is still allocated and $s_i(c_i',c_{-i}) =1$.
- Suppose now that when $i$ reports $c_i$, $L_{\mathcal{N}\setminus \{i^*\}}(\xi) < C V(i^*)$. Then $s_i(c_i,c_{-i})=1$ iff $i = i^*$.
+ by the monotonicity and submodularity of $V$. Hence $i\in S_G'$. As $L(\xi)$, is the optimal value of \eqref{relax} under relaxation $L$ when $i^*$ is excluded from $\mathcal{N}$, reducing the costs can only increase this value, so under $c'_i\leq c_i$ the greedy set is still allocated and $s_i(c_i',c_{-i}) =1$.
+ Suppose now that when $i$ reports $c_i$, $L(\xi) < C V(i^*)$. Then $s_i(c_i,c_{-i})=1$ iff $i = i^*$.
Reporting $c_{i^*}'\leq c_{i^*}$ does not change $V(i^*)$ nor
- $L_{\mathcal{N}\setminus \{i^*\}}(xi) \leq C V(i^*)$; thus $s_{i^*}(c_{i^*}',c_{-i^*})=1$.
+ $L(\xi) \leq C V(i^*)$; thus $s_{i^*}(c_{i^*}',c_{-i^*})=1$.
\end{proof}
\begin{lemma}\label{lemma:budget-feasibility}
The mechanism is budget feasible.
\end{lemma}
\begin{proof}
-Suppose that $L_{\mathcal{N}\setminus\{i^*\}}(\xi) < C V(i^*)$. Then the mechanism selects $i^*$; as the bid of $i^*$ does not affect the above condition, the threshold payment of $i^*$ is $B$ and the mechanism is budget feasible.
-Suppose thus that $L_{\mathcal{N}\setminus\{i^*\}}(\xi) \geq C V(i^*)$.
+Suppose that $L(\xi) < C V(i^*)$. Then the mechanism selects $i^*$; as the bid of $i^*$ does not affect the above condition, the threshold payment of $i^*$ is $B$ and the mechanism is budget feasible.
+Suppose thus that $L(\xi) \geq C V(i^*)$.
Denote by $S_G$ the set selected by the greedy algorithm, and for $i\in S_G$, denote by
$S_i$ the subset of the solution set that was selected by the greedy algorithm just prior to the addition of $i$---both sets determined for the present cost vector $c$. Chen \emph{et al.}~\cite{chen} show that, for any submodular function $V$, and for all $i\in S_G$:
%the reported cost of an agent selected by the greedy heuristic, and holds for
@@ -274,49 +274,49 @@ Hence, the total payment is bounded by the telescopic sum:
\end{proof}
Finally, we prove the approximation ratio of the mechanism. We use the
-following lemma, which establishes the optimal fractional relaxation
-$L_\mathcal{N}$ is not too far from $OPT(V,\mathcal{N},B)$.
+following lemma, which establishes that $OPT'$, the optimal value \eqref{relax} of the fractional relaxation $L$ under the budget constraints
+ is not too far from $OPT$.
\begin{lemma}\label{lemma:relaxation}
%\begin{displaymath}
- $ OPT(L_\mathcal{N}, B) \leq 4 OPT(V,\mathcal{N},B)
+ $ OPT' \leq 4 OPT
+ 2\max_{i\in\mathcal{N}}V(i)$
%\end{displaymath}
\end{lemma}
-Note that the lower bound $OPT(L_\mathcal{N}, B) \geq OPT(V,\mathcal{N},B)
-$ also holds trivially, as $L_{\mathcal{N}}$ is a fractional relaxation of $V$ over $\mathcal{N}$.
+Note that the lower bound $OPT(L, B) \geq OPT
+$ also holds trivially, as $L$ is a fractional relaxation of $V$ over $\mathcal{N}$.
The proof of Lemma~\ref{lemma:relaxation} is our main technical contribution, and can be found in Section \ref{sec:relaxation}.
Using this lemma, we can complete the proof of Theorem~\ref{thm:main} by showing that, %\begin{lemma}\label{lemma:approx}
%C_{\textrm{max}} = \max\left(1+C,\frac{3e}{e-1}\left( 1 + \frac{8e}{C
%(e-1) -10e +2}\right)\right)
- for any $\varepsilon > 0$, if $L(x^*)$ has been computed to a precision
+ for any $\varepsilon > 0$, if $OPT_{-i}'$, the optimal value of $L$ when $i^*$ is excluded from $\mathcal{N}$, has been computed to a precision
$\varepsilon$, then the set $S^*$ allocated by the mechanism is such that:
\begin{align}
- OPT(V,\mathcal{N}, B)
+ OPT
\leq \frac{14e\!-\!3 + \sqrt{160e^2\!-\!48e\!+\!9}}{2(e\!-\!1)} V(S^*)\!+\! \varepsilon \label{approxbound}
\end{align}
%\end{lemma}
- To see this, let $x^*\in [0,1]^{n-1}$ be the true maximizer of $L_{\mathcal{N}\setminus\{i^*\}}$ subject to the budget constraints. Assume that on line 3 of algorithm~\ref{mechanism}, a quantity
- $\tilde{L}$ such that $\tilde{L}-\varepsilon\leq L_{\mathcal{N}\setminus {i^*}}(x^*) \leq
- \tilde{L}+\varepsilon$ has been computed (lemma~\ref{lemma:complexity}
+ To see this, let $OPT_{-i^*}'$ be the true maximum value of $L$ subject to $\lambda_{i^*}=0$, $\sum_{i\in \mathcal{N}\setminus{i^*}}c_i\leq B$. Assume that on line 3 of algorithm~\ref{mechanism}, a quantity
+ $\tilde{L}$ such that $\tilde{L}-\varepsilon\leq OPT_{-i^*}' \leq
+ \tilde{L}+\varepsilon$ has been computed (Lemma~\ref{lemma:complexity}
states that this is computed in time within our complexity guarantee).
If the condition on line 3 of the algorithm holds, then:
\begin{displaymath}
- V(i^*) \geq \frac{1}{C}L_{N\setminus \{i\}}(x^*)-\frac{\varepsilon}{C} \geq
- \frac{1}{C}OPT(V,\mathcal{N}\setminus\{i^*\}, B) -\frac{\varepsilon}{C}
+ V(i^*) \geq \frac{1}{C}OPT_{-i^*}'-\frac{\varepsilon}{C} \geq
+ \frac{1}{C}OPT_{-i^*} -\frac{\varepsilon}{C}
\end{displaymath}
- as $L$ is a fractional relaxation of $V$ on $\mathcal{N}\setminus \{i^*\}$. Also,
+ as $L$ is a fractional relaxation of $V$. Also,
\begin{displaymath}
- OPT(V,\mathcal{N},B) \leq OPT(V,\mathcal{N}\setminus\{i^*\}, B) + V(i^*)
+ OPT \leq OPT_{-i^*} + V(i^*)
\end{displaymath}
Hence:
\begin{equation}\label{eq:bound1}
- OPT(V,\mathcal{N}, B)\leq (1+C)V(i^*) + \varepsilon
+ OPT\leq (1+C)V(i^*) + \varepsilon
\end{equation}
- Note that $OPT(L_{\mathcal{N}\setminus\{i^*\}},B)\leq OPT(L_{\mathcal{N}},B)$. If the condition does not hold,
+ Note that $OPT_{-i^*}'\leq OPT'$. If the condition does not hold,
from Lemmas \ref{lemma:relaxation} and \ref{lemma:greedy-bound}:
\begin{align*}
- V(i^*) & \stackrel{}\leq \frac{1}{C}L_{\mathcal{N}}(x^*) + \frac{\varepsilon}{C}\leq \frac{1}{C}
- \big(4 OPT(V,\mathcal{N}, B) + 2 V(i^*)\big) + \frac{\varepsilon}{C}\\
+ V(i^*) & \stackrel{}\leq \frac{1}{C}OPT_{-i^*}'+ \frac{\varepsilon}{C}\leq \frac{1}{C}
+ \big(4 OPT + 2 V(i^*)\big) + \frac{\varepsilon}{C}\\
& \leq \frac{1}{C}\left(\frac{4e}{e-1}\big(3 V(S_G)
+ 2 V(i^*)\big)
+ 2 V(i^*)\right) + \frac{\varepsilon}{C}
@@ -354,18 +354,18 @@ This solution is:
gives the approximation ratio in \eqref{approxbound}, and concludes the proof of Theorem~\ref{thm:main}.\hspace*{\stretch{1}}\qed
%\end{proof}
\subsection{Proof of Lemma~\ref{lemma:relaxation}}\label{sec:relaxation}
-%Recall that, since $L_\mathcal{N}$ is a fractional relaxation of $V$,
+%Recall that, since $L$ is a fractional relaxation of $V$,
%\begin{displaymath}
-% OPT(V,\mathcal{N},B) \leq OPT(L_\mathcal{N}, B).
+% OPT \leq OPT(L, B).
%\end{displaymath}
%However, for the purpose of proving theorem~\ref{thm:main}, we need to bound
-%$L_\mathcal{N}$ from above (up to a multiplicative factor) by $V$.
+%$L$ from above (up to a multiplicative factor) by $V$.
To prove Lemma~\ref{lemma:relaxation}, we use the
\emph{pipage rounding} method of Ageev and Sviridenko~\cite{pipage}, where
-$L_\mathcal{N}$ is first bounded from above by the multi-linear relaxation $F_\mathcal{N}$, which is itself
+$L$ is first bounded from above by the multi-linear relaxation $F$, which is itself
subsequently bounded by $V$. While the latter part is general and can be applied
to the multi-linear extension of any submodular function, the former part is
-specific to our choice for the function $L_\mathcal{N}$. %and is our main technical contribution (lemma~\ref{lemma:relaxation-ratio}).
+specific to our choice for the function $L$. %and is our main technical contribution (lemma~\ref{lemma:relaxation-ratio}).
We first prove a variant of the $\varepsilon$-convexity of the multi-linear
extension \eqref{eq:multilinear} introduced by Ageev and Sviridenko
@@ -375,7 +375,7 @@ referred to in the literature as \emph{cross-convexity} (see, \emph{e.g.},
\cite{dughmi}). Formally, %this property states that
if we define:
\begin{displaymath}
- \tilde{F}_\lambda(\varepsilon) \defeq F_\mathcal{N}\big(\lambda + \varepsilon(e_i
+ \tilde{F}_\lambda(\varepsilon) \defeq F\big(\lambda + \varepsilon(e_i
- e_j)\big)
\end{displaymath}
where $e_i$ and $e_j$ are two vectors of the standard basis of
@@ -388,7 +388,7 @@ or the $j$-th component of $\lambda$ becomes integral.
The lemma below proves that we can similarly trade a fractional component for
an other until one of them becomes integral \emph{while maintaining the
-feasibility of the point at which $F_\mathcal{N}$ is evaluated}. Here, by feasibility of
+feasibility of the point at which $F$ is evaluated}. Here, by feasibility of
a point $\lambda$, we mean that it satisfies the budget constraint $\sum_{i=1}^n \lambda_i c_i \leq B$.
\begin{lemma}[Rounding]\label{lemma:rounding}
For any feasible $\lambda\in[0,1]^{n}$, there exists a feasible
@@ -404,7 +404,7 @@ a point $\lambda$, we mean that it satisfies the budget constraint $\sum_{i=1}^n
two fractional components, returns some feasible $\lambda'$ with one less fractional
component such that:
\begin{displaymath}
- F_\mathcal{N}(\lambda) \leq F_\mathcal{N}(\lambda')
+ F(\lambda) \leq F(\lambda')
\end{displaymath}
Applying this procedure recursively yields the lemma's result.
Let us consider such a feasible $\lambda$. Let $i$ and $j$ be two
@@ -448,49 +448,19 @@ a point $\lambda$, we mean that it satisfies the budget constraint $\sum_{i=1}^n
For all $\lambda\in[0,1]^{n},$
%\begin{displaymath}
$ \frac{1}{2}
- \,L_\mathcal{N}(\lambda)\leq
- F_\mathcal{N}(\lambda)\leq L_{\mathcal{N}}(\lambda)$.
+ \,L(\lambda)\leq
+ F(\lambda)\leq L(\lambda)$.
%\end{displaymath}
\end{lemma}
\begin{proof}
+ The bound $F_{\mathcal{N}}(\lambda)\leq L_{\mathcal{N}(\lambda)}$ follows by the concavity of the $\log\det$ function.
We will prove that $\frac{1}{2}$ is a lower bound of the ratio $\partial_i
- F_\mathcal{N}(\lambda)/\partial_i L_\mathcal{N}(\lambda)$, where
- $\partial_i\, \cdot$ denotes the partial derivative of a function with respect to the
- $i$-th variable. This will be enough to conclude, by observing the following cases.
- First, if the minimum of the ratio
- $F_\mathcal{N}(\lambda)/L_\mathcal{N}(\lambda)$ is attained at a point interior to the hypercube, then it is
- a critical point; such a critical point is
- characterized by:
- \begin{equation}\label{eq:lhopital}
- \frac{F_\mathcal{N}(\lambda)}{L_\mathcal{N}(\lambda)}
- = \frac{\partial_i F_\mathcal{N}(\lambda)}{\partial_i
- L_\mathcal{N}(\lambda)} \geq \frac{1}{2}
- \end{equation}
- Second, if the minimum is attained as
- $\lambda$ converges to zero in, \emph{e.g.}, the $l_2$ norm, by the Taylor approximation, one can write:
- \begin{displaymath}
- \frac{F_\mathcal{N}(\lambda)}{L_\mathcal{N}(\lambda)}
- \sim_{\lambda\rightarrow 0}
- \frac{\sum_{i\in \mathcal{N}}\lambda_i\partial_i F_\mathcal{N}(0)}
- {\sum_{i\in\mathcal{N}}\lambda_i\partial_i L_\mathcal{N}(0)}
- \geq \frac{1}{2},
- \end{displaymath}
- \emph{i.e.}, the ratio $\frac{F_\mathcal{N}(\lambda)}{L_\mathcal{N}(\lambda)}$ is necessarily bounded from below by 1/2 for small enough $\lambda$.
- Finally, if the minimum is attained on a face of the hypercube $[0,1]^n$ (a face is
- defined as a subset of the hypercube where one of the variable is fixed to
- 0 or 1), without loss of generality, we can assume that the minimum is
- attained on the face where the $n$-th variable has been fixed
- to 0 or 1. Then, either the minimum is attained at a point interior to the
- face or on a boundary of the face. In the first case, relation
- \eqref{eq:lhopital} still characterizes the minimum for $i< n$.
- In the second case, by repeating the argument again by induction, we see
- that all is left to do is to show that the bound holds for the vertices of
- the cube (the faces of dimension 1). The vertices are exactly the binary
- points, for which we know that both relaxations are equal to the value
- function $V$. Hence, the ratio is equal to 1 on the vertices.
-
- Let us start by computing the derivatives of $F_\mathcal{N}$ and
- $L_\mathcal{N}$ with respect to the $i$-th component.
+ F(\lambda)/\partial_i L(\lambda)$, where
+ $\partial_i\, \cdot$ denotes the partial derivative with respect to the
+ $i$-th variable.
+
+ Let us start by computing the derivatives of $F$ and
+ $L$ with respect to the $i$-th component.
For $F$, it suffices to look at the derivative of
$P_\mathcal{N}^\lambda(S)$:
\begin{displaymath}
@@ -503,7 +473,7 @@ For all $\lambda\in[0,1]^{n},$
\end{displaymath}
Hence:
\begin{multline*}
- \partial_i F_\mathcal{N} =
+ \partial_i F =
\sum_{\substack{S\subseteq\mathcal{N}\\ i\in S}}
P_{\mathcal{N}\setminus\{i\}}^\lambda(S\setminus\{i\})V(S)
- \sum_{\substack{S\subseteq\mathcal{N}\\ i\in \mathcal{N}\setminus S}}
@@ -512,7 +482,7 @@ For all $\lambda\in[0,1]^{n},$
Now, using that every $S$ such that $i\in S$ can be uniquely written as
$S'\cup\{i\}$, we can write:
\begin{multline*}
- \partial_i F_\mathcal{N} =
+ \partial_i F =
\sum_{\substack{S\subseteq\mathcal{N}\\ i\in\mathcal{N}\setminus S}}
P_{\mathcal{N}\setminus\{i\}}^\lambda(S)V(S\cup\{i\})
- \sum_{\substack{S\subseteq\mathcal{N}\\ i\in \mathcal{N}\setminus S}}
@@ -523,15 +493,15 @@ For all $\lambda\in[0,1]^{n},$
$ V(S\cup\{i\}) - V(S) = \frac{1}{2}\log\left(1 + \T{x_i} A(S)^{-1}x_i\right)$.
Using this,
\begin{displaymath}
- \partial_i F_\mathcal{N}(\lambda) = \frac{1}{2}
+ \partial_i F(\lambda) = \frac{1}{2}
\sum_{\substack{S\subseteq\mathcal{N}\\ i\in\mathcal{N}\setminus S}}
P_{\mathcal{N}\setminus\{i\}}^\lambda(S)
\log\Big(1 + \T{x_i}A(S)^{-1}x_i\Big)
\end{displaymath}
- where $A(S) =I_d+ \T{X_S}X_S$. The computation of the derivative of $L_\mathcal{N}$ uses standard matrix
+ where $A(S) =I_d+ \T{X_S}X_S$. The computation of the derivative of $L$ uses standard matrix
calculus and gives:
\begin{displaymath}
- \partial_i L_\mathcal{N}(\lambda)
+ \partial_i L(\lambda)
=\frac{1}{2} \T{x_i}\tilde{A}(\lambda)^{-1}x_i
\end{displaymath}
where $\tilde{A}(\lambda) = I_d+\sum_{i\in \mathcal{N}}\lambda_ix_i\T{x_i}$. Using the following inequalities (where $A\geq B$ implies $A-B$ is positive semi-definite):
@@ -545,7 +515,7 @@ Using this,
\end{gather*}
we get:
\begin{align*}
- \partial_i F_\mathcal{N}(\lambda)
+ \partial_i F(\lambda)
% & = \sum_{\substack{S\subseteq\mathcal{N}\\ i\in\mathcal{N}\setminus S}} P_\mathcal{N}^\lambda(S) \log\Big(1 + \T{x_i}A(S)^{-1}x_i\Big)\\
& \geq \frac{1}{4}
\sum_{\substack{S\subseteq\mathcal{N}\\ i\in\mathcal{N}\setminus S}}
@@ -570,43 +540,75 @@ Using this,
\end{displaymath}
Hence:
\begin{displaymath}
- \partial_i F_\mathcal{N}(\lambda) \geq
+ \partial_i F(\lambda) \geq
\frac{1}{4}
\T{x_i}\bigg(\sum_{S\subseteq\mathcal{N}}P_\mathcal{N}^\lambda(S)A(S)^{-1}\bigg)x_i
\end{displaymath}
Finally, using that the inverse is a matrix convex function over symmetric
positive definite matrices:
\begin{align*}
- \partial_i F_\mathcal{N}(\lambda) &\geq
+ \partial_i F(\lambda) &\geq
\frac{1}{4}
\T{x_i}\bigg(\sum_{S\subseteq\mathcal{N}}P_\mathcal{N}^\lambda(S)A(S)\bigg)^{-1}x_i
\geq \frac{1}{2}
- \partial_i L_\mathcal{N}(\lambda)\qed
- \end{align*}
+ \partial_i L(\lambda) \end{align*}
+
+This will be enough to conclude, by observing the following cases.
+ First, if the minimum of the ratio
+ $F(\lambda)/L(\lambda)$ is attained at a point interior to the hypercube, then it is
+ a critical point; such a critical point is
+ characterized by:
+ \begin{equation}\label{eq:lhopital}
+ \frac{F(\lambda)}{L(\lambda)}
+ = \frac{\partial_i F(\lambda)}{\partial_i
+ L(\lambda)} \geq \frac{1}{2}
+ \end{equation}
+ Second, if the minimum is attained as
+ $\lambda$ converges to zero in, \emph{e.g.}, the $l_2$ norm, by the Taylor approximation, one can write:
+ \begin{displaymath}
+ \frac{F(\lambda)}{L(\lambda)}
+ \sim_{\lambda\rightarrow 0}
+ \frac{\sum_{i\in \mathcal{N}}\lambda_i\partial_i F(0)}
+ {\sum_{i\in\mathcal{N}}\lambda_i\partial_i L(0)}
+ \geq \frac{1}{2},
+ \end{displaymath}
+ \emph{i.e.}, the ratio $\frac{F(\lambda)}{L(\lambda)}$ is necessarily bounded from below by 1/2 for small enough $\lambda$.
+ Finally, if the minimum is attained on a face of the hypercube $[0,1]^n$ (a face is
+ defined as a subset of the hypercube where one of the variable is fixed to
+ 0 or 1), without loss of generality, we can assume that the minimum is
+ attained on the face where the $n$-th variable has been fixed
+ to 0 or 1. Then, either the minimum is attained at a point interior to the
+ face or on a boundary of the face. In the first case, relation
+ \eqref{eq:lhopital} still characterizes the minimum for $i< n$.
+ In the second case, by repeating the argument again by induction, we see
+ that all is left to do is to show that the bound holds for the vertices of
+ the cube (the faces of dimension 1). The vertices are exactly the binary
+ points, for which we know that both relaxations are equal to the value
+ function $V$. Hence, the ratio is equal to 1 on the vertices.
\end{proof}
- To prove Lemma~\ref{lemma:relaxation}, let us consider a feasible point $\lambda^*\in[0,1]^{n}$ such that $L_\mathcal{N}(\lambda^*)
- = OPT(L_\mathcal{N}, B)$. By applying Lemma~\ref{lemma:relaxation-ratio}
+ To prove Lemma~\ref{lemma:relaxation}, let us consider a feasible point $\lambda^*\in[0,1]^{n}$ such that $L(\lambda^*)
+ = OPT(L, B)$. By applying Lemma~\ref{lemma:relaxation-ratio}
and Lemma~\ref{lemma:rounding} we get a feasible point $\bar{\lambda}$ with at most
one fractional component such that:
\begin{equation}\label{eq:e1}
- L_\mathcal{N}(\lambda^*) \leq 2
- F_\mathcal{N}(\bar{\lambda})
+ L(\lambda^*) \leq 2
+ F(\bar{\lambda})
\end{equation}
Let $\lambda_i$ denote the fractional component of $\bar{\lambda}$ and $S$
denote the set whose indicator vector is $\bar{\lambda} - \lambda_i e_i$.
- Using the fact that $F_\mathcal{N}$ is linear with respect to the $i$-th
+ Using the fact that $F$ is linear with respect to the $i$-th
component and is a relaxation of the value function, we get:
\begin{displaymath}
- F_\mathcal{N}(\bar{\lambda}) = V(S) +\lambda_i V(S\cup\{i\})
+ F(\bar{\lambda}) = V(S) +\lambda_i V(S\cup\{i\})
\end{displaymath}
Using the submodularity of $V$:
\begin{displaymath}
- F_\mathcal{N}(\bar{\lambda}) \leq 2 V(S) + V(i)
+ F(\bar{\lambda}) \leq 2 V(S) + V(i)
\end{displaymath}
Note that since $\bar{\lambda}$ is feasible, $S$ is also feasible and
- $V(S)\leq OPT(V,\mathcal{N}, B)$. Hence:
+ $V(S)\leq OPT$. Hence:
\begin{equation}\label{eq:e2}
- F_\mathcal{N}(\bar{\lambda}) \leq 2 OPT(V,\mathcal{N}, B)
+ F(\bar{\lambda}) \leq 2 OPT
+ \max_{i\in\mathcal{N}} V(i)
\end{equation}
Together, \eqref{eq:e1} and \eqref{eq:e2} imply the lemma. \hspace*{\stretch{1}}\qed