summaryrefslogtreecommitdiffstats
path: root/poster_nyce_2013/main.tex
diff options
context:
space:
mode:
Diffstat (limited to 'poster_nyce_2013/main.tex')
-rw-r--r--poster_nyce_2013/main.tex194
1 files changed, 194 insertions, 0 deletions
diff --git a/poster_nyce_2013/main.tex b/poster_nyce_2013/main.tex
new file mode 100644
index 0000000..688290e
--- /dev/null
+++ b/poster_nyce_2013/main.tex
@@ -0,0 +1,194 @@
+\documentclass[portrait]{beamer}
+\usepackage[utf8]{inputenc}
+\usepackage[orientation=portrait,size=custom,width=55,height=71,scale=1]{beamerposter}
+\usetheme{confposter}
+\usepackage{times}
+\newlength{\sepwid}
+\newlength{\onecolwid}
+\newlength{\twocolwid}
+\newlength{\threecolwid}
+\setlength{\paperwidth}{22in}
+\setlength{\paperheight}{28in}
+\setlength{\sepwid}{0.01\paperwidth}
+\setlength{\onecolwid}{0.47\paperwidth}
+\setlength{\twocolwid}{0.96\paperwidth}
+\setlength{\fboxrule}{2pt}
+\setlength{\fboxsep}{10pt}
+
+\usepackage{graphicx}
+\usepackage{amsmath}
+
+\title{Budget Feasible Mechanisms for Experimental Design}
+\author{Thibaut Horel$^*$ \and Stratis Ioannidis$^\dag$ \and Muthu Muthukrishnan$^\ddag$}
+\institute{$^*$École Normale Supérieure, $^\dag$Technicolor, $^\ddag$Rutgers University}
+
+\begin{document}
+
+
+\setlength{\belowcaptionskip}{2ex} % White space under figures
+\setlength\belowdisplayshortskip{2ex} % White space under equations
+
+\begin{frame}[t]
+\begin{columns}[t]
+\begin{column}{\sepwid}\end{column}
+\begin{column}{\sepwid}\end{column}
+
+\begin{column}{\onecolwid}
+
+\begin{block}{Setting}
+ \begin{center}
+ \includegraphics[scale=1]{st.pdf}
+\end{center}
+$N$ users, each of them has:
+\begin{itemize}
+ \item \textbf{public} features $x_i$ (\emph{e.g.} age, gender, height, etc.)
+ \item \textbf{private} data $y_i$ (\emph{e.g.} survey answer, medical test outcome)
+ \item cost $c_i$ to reveal their data
+\end{itemize}
+
+Experimenter \textsf{E}:
+\begin{itemize}
+ \item pays users to reveal their private data
+ \item has a budget constraint $B$
+\end{itemize}
+\end{block}
+
+\begin{block}{Ridge Regression}
+ \begin{enumerate}
+ \item Experimenter $E$ assumes a linear model:
+\begin{displaymath}
+ y_i = \beta^{T}x_i + \varepsilon_i,\quad\varepsilon_i\sim\mathcal{N}(0,\sigma^2)
+\end{displaymath}
+and a normal prior: $\beta\sim\mathcal{N}(0,\sigma^2I_d)$.
+\item Experimenter $E$ selects a set $S$ of users within his budget constraint,
+and learns $\beta$ through ridge regression:
+\begin{displaymath}
+ \hat{\beta} = \sigma^{-2}\arg\,\min_\beta\Big[ \sum_{i\in S}(y_i-\beta^Tx_i)^2 + \|\beta\|^2\Big]
+\end{displaymath}
+\end{enumerate}
+\end{block}
+
+\begin{block}{Value of Data}
+ \textbf{Goal} minimize the variance-covariance matrix of the
+ estimator:
+ \begin{displaymath}
+ \mathrm{Var}\, \hat{\beta} = \Big(I_d+\sum_{i\in S}x_ix_i^T\Big)^{-1}
+ \end{displaymath}
+ Minimizing the volume ($\det$) of the variance is equivalent to maximizing the information gain (entropy reduction) on $\beta$:
+ \begin{displaymath}
+ V(S) = \log\det\Big(I_d+\sum_{i\in S} x_ix_i^T\Big)
+ \end{displaymath}
+\end{block}
+
+\begin{block}{Experimental Design}
+The experimenter selects set of user $S$ solution to:
+\begin{displaymath}
+ \begin{split}
+ &\text{Maximize } V(S) = \log\det\Big(I_d+\sum_{i\in S} x_ix_i^T\Big)\\
+ &\text{Subject to } \sum_{i\in S} c_i\leq B
+\end{split}
+\end{displaymath}
+\begin{itemize}
+ \item specific case of budgeted submodular maximization
+ \item there exists a poly-time $\frac{e}{e-1}$-approximate algorithm
+\end{itemize}
+
+
+\end{block}
+\end{column}
+
+\begin{column}{\sepwid}\end{column}
+\vrule{}
+\begin{column}{\sepwid}\end{column}
+
+ \begin{column}{\onecolwid}
+ \begin{block}{Experimental Design with Strategic Users}
+ \begin{itemize}
+ \item users might lie about the reported costs $c_i$
+ \item payments and selection rule must be adapted accordingly
+ \end{itemize}
+ Specific case of \textbf{budget feasible mechanism design}; the payments and selection rule must satisfy:
+ \begin{itemize}
+ \item individual rationality and truthfulness
+ \item budget feasibility
+ \end{itemize}
+ Can we still obtain a constant approximation ratio in polynomial time?
+ \end{block}
+
+ \begin{block}{Mechanism blueprint for Experimental Design}
+ \fbox{\parbox{0.95\textwidth}{
+ \begin{itemize}
+ \item Compute $i^* = \arg\max_i V(\{i\})$
+ \item Compute $L^*$ (see below)
+ \item Compute $S_G$ greedily:
+ \begin{itemize}
+ \item repeatedly add element with \emph{highest
+ marginal-value-per-cost}:
+ \begin{align*}
+ i = \argmax_{j\in[N]\setminus
+ S}\frac{V(S\cup\{i\}) - V(S)}{c_i}\label{greedy}
+ \end{align*}
+ \item stop when the budget is exhausted
+ \end{itemize}
+ \item Return:
+ \begin{itemize}
+ \item $i^*$ if $V(\{i^*\})>L^*$
+ \item $S_G$ otherwise
+ \end{itemize}
+ \end{itemize}
+ }}
+
+ \vspace{0.3cm}
+
+ $L^*$ must be:
+ \begin{itemize}
+ \item close to $OPT:=\max_{S\subseteq [N]\setminus \{i^*\}} \{V(S);
+ \sum_{i\in S}c_i\leq B\}$
+ \item monotone in $c$; computable in poly-time
+ \end{itemize}
+ \end{block}
+
+ \begin{block}{Convex Relaxation for Experimental Design}
+ We introduce the following concave function:
+ \begin{displaymath}
+ L(\lambda) = \sum_{1\leq i\leq N}\log\det\Big(I_d
+ + \sum_{1\leq i\leq N} \lambda_i x_ix_i^T\Big).
+ \end{displaymath}
+ Then using $L^* = \max_\lambda \big\{L(\lambda); \sum_{1\leq i\leq N} c_i\leq B,\; \lambda_{i^*} = 0\big\}$:
+
+ \vspace{0.3cm}
+
+ \fbox{\parbox{0.95\textwidth}{
+ \textbf{Theorem:} \emph{The above mechanism is truthful, individually rational, budget-feasible, runs in polynomial time and its approximation \mbox{ratio} is $\simeq 12.984$.}}}
+
+ \vspace{0.5cm}
+
+ Technical challenges:
+ \begin{itemize}
+ \item $L^*$ is close to $OPT$ (shown via pipage rounding)
+ \item $L^*$ can be approximated monotonously in $c$
+ \end{itemize}
+ \end{block}
+ \begin{block}{Generalization}
+ \begin{itemize}
+ \item Generative model of the form:
+ \begin{displaymath}
+ y_i = f(x_i) + \varepsilon_i
+ \end{displaymath}
+\item Prior knowledge: $f$ is a random variable, the entropy $H(f)$ captures the
+ experimenter's uncertainty.
+\item Value function: information gain (entropy reduction) induced by the observed data of the users in $S$:
+ \begin{displaymath}
+ V(S) = H(f) - H(f\,|\,S)
+ \end{displaymath}
+ \end{itemize}
+ $V$ is again submodular and the previous framework applies.
+ \end{block}
+ \end{column}
+\begin{column}{\sepwid}\end{column}
+\begin{column}{\sepwid}\end{column}
+\end{columns}
+
+\end{frame}
+
+\end{document}