summaryrefslogtreecommitdiffstats
path: root/slides/latin/slides.tex
diff options
context:
space:
mode:
Diffstat (limited to 'slides/latin/slides.tex')
-rw-r--r--slides/latin/slides.tex454
1 files changed, 454 insertions, 0 deletions
diff --git a/slides/latin/slides.tex b/slides/latin/slides.tex
new file mode 100644
index 0000000..d82c3e8
--- /dev/null
+++ b/slides/latin/slides.tex
@@ -0,0 +1,454 @@
+\documentclass[10pt]{beamer}
+\usepackage[utf8x]{inputenc}
+\usepackage{amsmath,verbatim}
+\usepackage{algorithm,algpseudocode}
+\usepackage{graphicx}
+\DeclareMathOperator*{\argmax}{arg\,max}
+\DeclareMathOperator*{\argmin}{arg\,min}
+\usetheme{Boadilla}
+\newcommand{\E}{{\tt E}}
+
+\title[LATIN 2014]{Budget Feasible Mechanism\\for Experimental
+Design}
+\author[Thibaut Horel]{\textbf{Thibaut Horel}, Stratis Ioannidis, and S. Muthukrishnan}
+
+%\setbeamercovered{transparent}
+\setbeamertemplate{navigation symbols}{}
+
+\newcommand{\ie}{\emph{i.e.}}
+\newcommand{\eg}{\emph{e.g.}}
+\newcommand{\etc}{\emph{etc.}}
+\newcommand{\etal}{\emph{et al.}}
+\newcommand{\reals}{\ensuremath{\mathbb{R}}}
+
+\begin{document}
+
+\maketitle
+
+\begin{frame}{Motivation}
+ \begin{center}
+ \includegraphics<1>[scale=0.4]{stg-8.pdf}
+ \includegraphics<2>[scale=0.4]{stg-7.pdf}
+ \includegraphics<3>[scale=0.4]{stg-6.pdf}
+ \includegraphics<4>[scale=0.4]{stg-5.pdf}
+ \includegraphics<5>[scale=0.4]{stg-4.pdf}
+ \includegraphics<6>[scale=0.4]{stg-3.pdf}
+ \includegraphics<7>[scale=0.4]{stg-2.pdf}
+ \includegraphics<8>[scale=0.4]{stg-1.pdf}
+ \end{center}
+
+\end{frame}
+
+\begin{frame}{Applications}
+ \begin{itemize}
+ \item<1-> Applications
+ \begin{itemize}
+ \item Medicine/Sociology
+ \item Online surveys
+ \item Data markets
+ \end{itemize}
+\vspace*{1cm}
+ \item<2-> Challenges
+ \begin{itemize}
+ \item Which users are \alert{the most valuable}?
+ \item What if users are \alert{strategic}?
+ \end{itemize}
+ \end{itemize}
+\end{frame}
+
+\begin{frame}{Contributions}
+\pause
+ \begin{itemize}
+ \item Formulating the problem in the Experimental Design framework
+ \pause
+ \item Experimental design with \alert{strategic agents}?\pause
+ \begin{itemize}
+ \item Budget Feasible Mechanisms [Singer, 2010]
+ \end{itemize}
+ \end{itemize}
+ \pause
+ \vspace*{1cm}
+
+ For Linear Regression:
+ \begin{itemize}
+ \item deterministic, poly-time, truthful, budget
+ feasible, 12.9-approximate mechanism.
+ \pause
+ \item Lower bound of 2.
+ \pause
+ \item Prior results:
+ \pause
+ \begin{itemize}
+ \item deterministic exponential-time mechanism [Singer, 2010; Chen \etal, 2011]
+ \pause
+ \item universally truthful (randomized) mechanism [Chen \etal, 2011; Singer, 2012]
+ \end{itemize}
+ \end{itemize}
+
+\pause
+\vspace*{1cm}
+
+ Generalization to more general statistical learning tasks.
+\end{frame}
+
+\begin{frame}{Problem}
+ \begin{center}
+ \includegraphics<1>[scale=0.4]{st2.pdf}
+ \includegraphics<2>[scale=0.4]{st3.pdf}
+ \includegraphics<3>[scale=0.4]{st4.pdf}
+ \includegraphics<4>[scale=0.4]{st5.pdf}
+ \includegraphics<5>[scale=0.4]{st6.pdf}
+ \includegraphics<6>[scale=0.4]{st6a.pdf}
+ \includegraphics<7>[scale=0.4]{st6b.pdf}
+ \includegraphics<8>[scale=0.4]{st6c.pdf}
+ \includegraphics<9>[scale=0.4]{st6d.pdf}
+ \includegraphics<10->[scale=0.4]{st6e.pdf}
+ \end{center}
+ \vspace*{-2em}
+ \begin{center}
+ \begin{overprint}
+ \onslide<1>\begin{center}$N$ ``experiment subjects'', $[N]\equiv
+ \{1,\ldots,N\}$ \end{center}
+ \onslide<2>
+ \begin{center}
+ $x_i\in \reals^d$: public features (\eg, age, gender, height, \etc)
+ \end{center}
+ \onslide<3>
+ \begin{center}
+ $y_i\in \reals$: private data (\eg, survey answer, medical test outcome, movie rating\ldots)
+ \end{center}
+ \onslide<4>
+ \textbf{Gaussian Linear Model.} There exists $\beta\in \reals^d$ s.t.\vspace*{-1em}
+ \begin{displaymath}
+ y_i = \beta^T x_i + \varepsilon_i,\quad
+ \varepsilon_i\sim\mathcal{N}(0,\sigma^2), \quad i\in [N]
+ \end{displaymath}
+ \onslide<5>
+ \begin{center}
+ Experimenter {\tt E} wishes to learn $\beta$.
+ \end{center}
+ \onslide<6>
+ \begin{center}
+ Each subject $i\in [N]$ has a cost $c_i\in \reals_+$
+ \end{center}
+ \onslide<7>
+ \begin{center}
+ \E\ has a budget $B$.
+ \end{center}
+ \onslide<8-9>
+ \begin{center}
+ \E\ pays subjects\visible<9>{; $y_i$ is revealed upon payment.}
+ \end{center}
+ \onslide<10>
+ \begin{center}
+ {\tt E} estimates ${\beta}$ through \emph{ridge regression}.
+ \end{center}
+ \onslide<11>
+ \begin{center}
+ Goal: Determine who to pay how much so that $\hat{\beta}$ is as
+ accurate as possible.
+ \end{center}
+ \onslide<12>
+ \begin{center}
+ Users are \alert{strategic} and may lie about costs $c_i$\\users cannot manipulate $x_i$ or $y_i$.
+ \end{center}
+
+ \end{overprint}
+ \end{center}
+\end{frame}
+
+\begin{frame}{Value of data}
+
+Let $S\subset [N]$ be the set of selected users.
+
+\E\ has a \emph{prior} on $\beta$:
+$$\beta \sim \mathcal{N}(0,\sigma^2 R^{-1}). $$
+
+\pause
+Information Gain: reduction of uncertainty on $\beta$
+\begin{align*}
+ I(\beta;S)&=H(\beta)-H(\beta\mid y_i,i\in S)\\
+ \pause
+ & = \frac{1}{2}\log\det \Big(R+\sum_{i\in S}x_ix_i^T\Big)-\frac{1}{2}\log\det R
+\end{align*}
+\end{frame}
+
+\begin{frame}{Experimental Design}
+\begin{block}{\textsc{Experimental Design Problem (EDP)} }
+\vspace*{-0.4cm}
+\begin{align*}
+ \text{Maximize}\qquad &V(S) = \log \det (I+\sum_{i\in S}x_ix_i^T) \\
+ \text{subj. to}\qquad &\textstyle\sum_{i\in S}c_i\leq B
+\end{align*}
+\end{block}
+
+\vspace*{1cm}
+\pause
+\begin{itemize}
+\item EDP is NP-hard
+ \pause
+\item $V$ is submodular, monotone, non-negative, and $V(\emptyset)=0$
+ \pause
+\item $\frac{e}{e-1}$-approximable (Sviridenko 2004, Krause and Guestrin 2005)
+\end{itemize}
+\end{frame}
+
+\begin{frame}{Experimental Design with Strategic Agents}
+\begin{block}{Value function}
+\vspace*{-0.4cm}
+\begin{align*}
+ \text{Maximize}\qquad &V(S) = \log \det (I+\sum_{i\in S}x_ix_i^T) \\
+ \text{subj. to}\qquad &\textstyle\sum_{i\in S}c_i\leq B
+\end{align*}
+\end{block}
+
+\vspace*{1cm}
+\pause
+Budgeted auction mechanism design problem. \pause
+
+\vspace*{0.5cm}
+
+Payments and allocation rule must be:
+\begin{itemize}
+\item normalized, truthful and individually rational
+\pause
+\item computable in polynomial time, give a good approximation ratio
+\end{itemize}
+\end{frame}
+
+
+\begin{frame}{Our Main Results}
+ \begin{theorem}
+ There exists a deterministic, budget feasible, individually rational and truthful mechanism for
+ EDP which runs in polynomial time. Its
+ approximation ratio is:
+ \begin{displaymath}
+ \frac{10e-3 + \sqrt{64e^2-24e + 9}}{2(e-1)}
+ \simeq 12.98
+ \end{displaymath}
+ \end{theorem}
+
+ \pause
+ \vspace*{0.5cm}
+
+ \begin{theorem}
+ There is no 2-approximate, budget feasible, individually rational and truthful mechanism for
+ EDP. \end{theorem}
+
+ \pause
+ \vspace*{0.5cm}
+
+ \alert{Bonus:} two technical approximation results.
+\end{frame}
+
+\begin{frame}{Blueprint for Deterministic, Poly-time Algorithm}
+Azar and Gamzu 2008, Singer 2010, Chen \etal\ 2011:
+ \begin{block}{Allocation rule}
+ \begin{itemize}
+ \item Find $i^* = \arg\max_i V(\{i\})$
+ \item Compute $S_G$ greedily
+ \item Return:
+ \begin{itemize}
+ \item $\{i^*\}$ if $V(\{i^*\}) \geq \alert<2>{OPT_{-i^*}}$
+ \item $S_G$ otherwise
+ \end{itemize}
+ \end{itemize}
+ \end{block}
+ \vspace{0.5cm}
+ \pause
+ \pause
+ \begin{columns}[c]
+ \begin{column}{0.53\textwidth}
+Replace $OPT_{-i^*}$ with a \alert{relaxation $L^*$}:\pause
+ \begin{itemize}
+ \item computable in polynomial time
+ \pause
+ \item close to $OPT_{-i^*}$
+ \pause
+ \item monotone in costs $c$
+ \end{itemize}
+ \end{column}
+ \pause
+ \begin{column}{0.45\textwidth}
+ \begin{itemize}
+ \item \textsc{Knapsack} (Chen \etal, 2011)
+ \item \textsc{Coverage} (Singer, 2012)
+ \end{itemize}
+ \end{column}
+ \end{columns}
+\end{frame}
+
+\begin{frame}{A relaxation for \textsc{EDP}}
+\alt<1>{
+ \begin{block}{\textsc{EDP} }
+ \vspace*{-0.4cm}
+ \begin{align*}
+ \text{Maximize}\qquad &V(S) = \log \det\big(I+\sum_{i\in S}x_ix_i^T\big) \\
+ \text{subj. to}\qquad &\textstyle\sum_{i\in S}c_i\leq B
+ \end{align*}
+ \end{block}
+}
+{
+ \begin{block}{Convex Relaxation}
+ \vspace*{-0.4cm}
+ \begin{align*}
+ \text{Maximize}\qquad &\alert<2>{L(\lambda)} = \log \det \big(I+\sum_{i\in [N]}\alert<2>{\lambda_i}x_ix_i^T\big) \\
+ \text{subj. to}\qquad &\textstyle\sum_{i\in [N]}\alert<2>{\lambda_i}c_i\leq B, \lambda_i\in [0,1]
+ \end{align*}
+ \end{block}
+}
+\pause
+\vspace{0.5cm}
+$L(\lambda^*)$ is:
+\begin{itemize}
+ \item Monotone in $c$
+ \pause
+ \item Poly-time: $L$ is concave
+\end{itemize}
+\end{frame}
+
+\begin{frame}{First technical result: integrality gap}
+ \begin{align*}
+ \text{Maximize}\qquad &L(\lambda) = \log \det \big(I+\sum_{i\in [N]}\lambda_ix_ix_i^T\big) \\
+ \text{subj. to}\qquad &\textstyle\sum_{i\in [N]}\lambda_ic_i\leq B, \lambda_i\in [0,1]
+ \end{align*}
+
+ \pause
+ \vspace{0.5cm}
+
+ \begin{block}{Integrality gap}
+ For $\lambda^*$ the optimal solution:
+ \begin{displaymath}
+ OPT\leq L(\lambda^*) \leq 2 OPT + 2V(\{i^*\})
+ \end{displaymath}
+ \end{block}
+
+ \pause
+ \vspace{0.5cm}
+
+ \alert{Proof:}
+ \begin{itemize}
+ \item relate $L$ to the multilinear extension of $V$
+ \item use \alert{pipage rounding} [Ageev and Sviridenko, 2004]
+ \end{itemize}
+
+\end{frame}
+
+\begin{frame}{Second technical result: monotone approximation}
+ \begin{block}{EDP-relaxed}
+ \begin{align*}
+ \text{Maximize}\qquad &L(\lambda) = \log \det \big(I+\sum_{i\in [N]}\lambda_ix_ix_i^T\big) \\
+ \text{subj. to}\qquad &\textstyle\sum_{i\in [N]}\lambda_ic_i\leq B, \lambda_i\in [\only<1-2>{0}\only<3->{\alert<3>{\alpha}},1]
+ \end{align*}
+ \end{block}
+
+ \vspace*{1cm}
+ \pause
+
+ Convex optimization only gives $\delta$-approximation $\alert{\Rightarrow}$ breaks monotonicity.
+
+ \vspace*{1cm}
+ \pause
+
+ Shrink feasible set:
+ \begin{itemize}
+ \pause
+ \item $L$ is ``sufficiently'' monotone
+ \pause
+ \item a $\delta$-approximation of its optimum is $\varepsilon(\delta,\alpha)$-monotone in the costs
+ \pause
+ \item tune $\delta$, $\alpha$ $\Rightarrow$ $\varepsilon$-truthful mechanism
+ \end{itemize}
+
+
+\end{frame}
+
+
+%\begin{frame}{Towards More General ML Tasks}
+% \begin{center}
+% \includegraphics<1>[scale=0.4]{st2.pdf}
+% \includegraphics<2>[scale=0.4]{st3.pdf}
+% \includegraphics<3>[scale=0.4]{st4.pdf}
+% \includegraphics<4-5>[scale=0.4]{st25.pdf}
+% \includegraphics<6->[scale=0.4]{st26.pdf}
+% \end{center}
+%
+% \begin{overprint}
+% \onslide<1>
+% \begin{center}$N$ experiment subjects\end{center}
+% \onslide<2>
+% \begin{center}
+% $x_i\in \Omega$: public features
+% \end{center}
+% \onslide<3>
+% \begin{center}
+% $y_i\in \reals$: private data
+% \end{center}
+% \onslide<4-5>
+% \begin{center}
+% \textbf{Hypothesis.} There exists $h:\Omega\to \reals$ s.t.
+% % \begin{displaymath}
+% $y_i = h(x_i) + \varepsilon_i,$ %\quad
+% where $\varepsilon_i$ are independent.
+% \visible<5>{Examples: Logistic Regression, LDA, SVMs, \etc}
+% % \end{displaymath}
+% \end{center}
+%%$$y_i = \beta^Tx_i + \varepsilon_i, i=1,\ldots, N$$
+% %\end{center}
+% \onslide<6>
+% \begin{center}
+% Experimenter {\tt E} wishes to learn $h$, and has a prior distribution over $$\mathcal{H}=\{\text{mappings from }\Omega\text{ to }\reals\}.$$
+% \end{center}
+% \onslide<7->\begin{center}
+%\vspace*{-0.5cm}
+%% \begin{block}
+%%{Value function: Information gain}
+% \begin{displaymath}
+% V(S) = H(h) - H(h\mid y_i,i\in S),\quad S\subseteq[N]
+% \end{displaymath}
+% % \end{block}
+% \visible<8>{$V$ is submodular! [Krause and Guestrin 2009]}
+% \end{center}
+% \end{overprint}
+%
+%\end{frame}
+
+\begin{frame}{Conclusion}
+ \begin{itemize}
+ \item Experimental design + Budget Feasible Mechanisms
+ \vspace{1cm}
+ \pause
+ \item Deterministic mechanism for other ML Tasks? General submodular functions?
+ \vspace{1cm}
+ \pause
+ \item Approximation ratio $\simeq \alert{13}$. Lower bound: \alert{$2$}
+ \end{itemize}
+\end{frame}
+\begin{frame}{}
+\vspace{\stretch{1}}
+\begin{center}
+{\Huge Thank you!}
+\end{center}
+\vspace{\stretch{1}}
+\end{frame}
+
+\begin{frame}{Non-Homotropic Prior}
+Recall that:
+\begin{align*}
+V(S)&=H(\beta)-H(\beta\mid y_i,i\in S)\\
+& = \frac{1}{2}\log\det (R^{-1}+\sum_{i\in S}x_ix_i^T)
+\end{align*}
+What if $R\neq I$?
+\begin{theorem}
+ There exists a truthful, poly-time, and budget feasible mechanism for the objective
+ function $V$ above. Furthermore,
+ the algorithm computes a set $S^*$ such that:
+ \begin{displaymath}
+ OPT \leq
+ \frac{5e-1}{e-1}\frac{2}{\mu\log(1+1/\mu)}V(S^*) + 5.1
+\end{displaymath}
+where $\mu$ is the largest eigenvalue of $R$.
+\end{theorem}
+\end{frame}
+
+\end{document}