summaryrefslogtreecommitdiffstats
path: root/appendix.tex
blob: 6926e00a77ee403dd5b2900c66c929c433c18ef0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
\section{Properties of the Value Function $V$} \label{app:properties}
For the sake of concreteness, we prove below the positivity, monotonicity, and submodularity of $V(S) = \log\det(I_d+X_S^TX_S)$ from basic principles. We note however that these properties hold more generally for the information gain under a wider class of models than the linear model with Gaussian noise and prior that we study here: we discuss this in more detail in Appendix~\ref{sec:ext}.

For two symmetric matrices $A$ and $B$, we write $A\succ B$ ($A\succeq B$) if
$A-B$ is positive definite (positive semi-definite).  This order allows us to
define the notion of a \emph{decreasing} as well as  \emph{convex} matrix
function, similarly to their real counterparts. With this definition, matrix
inversion is decreasing and convex over symmetric positive definite
matrices (see Example 3.48 p. 110 in \cite{boyd2004convex}).

Recall that the determinant of a matrix equals the product of its eigenvalues. The positivity of $V(S)$ follows from the fact that $X_S^TX_S$ is positive semi-definite and, as such $I_d+X_S^TX_S\succeq I_d$, so all its eigenvalues are larger than or equal to one, and they are all one if $S=\emptyset$. The marginal contribution of item $i\in\mathcal{N}$ to set
    $S\subseteq \mathcal{N}$ can be written as 
\begin{align}
V(S\cup \{i\}) - V(S)& =   \frac{1}{2}\log\det(I_d 
    + \T{X_S}X_S + x_i\T{x_i})
    - \frac{1}{2}\log\det(I_d + \T{X_S}X_S)\nonumber\\
    &  = \frac{1}{2}\log\det(I_d + x_i\T{x_i}(I_d +
\T{X_S}X_S)^{-1})\nonumber\\
&= \frac{1}{2}\log(1 + \T{x_i}A(S)^{-1}x_i)\label{eq:marginal_contrib}
\end{align}
where $A(S) \defeq I_d+ \T{X_S}X_S$, and the last equality follows from the
Sylvester's determinant identity~\cite{sylvester}. Monotonicity therefore follows from the fact that $A(S)^{-1}$ is positive semidefinite. Finally, since the inverse is decreasing over positive definite matrices, we have
\begin{gather}
        \forall S\subseteq\mathcal{N},\quad A(S)^{-1} \succeq A(S\cup\{i\})^{-1}. \label{eq:inverse}
\end{gather}
and submodularity also follows, as a function is submodular if and only if the marginal contributions are non-increasing in $S$. \qed


\section{Proofs of Statements in Section~\ref{sec:concave}}
\subsection{Proof of Lemma~\ref{lemma:relaxation-ratio}}\label{proofofrelaxation-ratio}
%\begin{proof}
    The bound $F(\lambda)\leq L(\lambda)$ follows by the concavity of the $\log\det$ function and Jensen's inequality.
    To show the lower bound, 
    we first prove that $\frac{1}{2}$ is a lower bound of the ratio $\partial_i
    F(\lambda)/\partial_i L(\lambda)$, where we use
    $\partial_i\, \cdot$ as a shorthand for  $\frac{\partial}{\partial \lambda_i}$, the partial derivative  with respect to the
    $i$-th variable. 

   Let us start by computing the partial derivatives of $F$ and
    $L$ with respect to the $i$-th component. 
    Observe that
    \begin{displaymath}
        \partial_i P_\mathcal{N}^\lambda(S) = \left\{
            \begin{aligned}
                & P_{\mathcal{N}\setminus\{i\}}^\lambda(S\setminus\{i\})\;\textrm{if}\;
                i\in S, \\
                & - P_{\mathcal{N}\setminus\{i\}}^\lambda(S)\;\textrm{if}\;
                i\in \mathcal{N}\setminus S. \\
            \end{aligned}\right.
    \end{displaymath}
    Hence,
    \begin{displaymath}
        \partial_i F(\lambda) =
        \sum_{\substack{S\subseteq\mathcal{N}\\ i\in S}}
        P_{\mathcal{N}\setminus\{i\}}^\lambda(S\setminus\{i\})V(S)
        - \sum_{\substack{S\subseteq\mathcal{N}\\ i\in \mathcal{N}\setminus S}}
        P_{\mathcal{N}\setminus\{i\}}^\lambda(S)V(S).
    \end{displaymath}
    Now, using that every $S$ such that $i\in S$ can be uniquely written as
    $S'\cup\{i\}$, we can write:
    \begin{displaymath}
        \partial_i F(\lambda) =
        \sum_{\substack{S\subseteq\mathcal{N}\\ i\in\mathcal{N}\setminus S}}
        P_{\mathcal{N}\setminus\{i\}}^\lambda(S)\big(V(S\cup\{i\})
        - V(S)\big).
    \end{displaymath}
Recall from \eqref{eq:marginal_contrib} that the marginal contribution of $i$ to $S$ is given by
$$V(S\cup \{i\}) - V(S) =\frac{1}{2}\log(1 + \T{x_i}A(S)^{-1}x_i), $$
where $A(S) = I_d+ \T{X_S}X_S$.
%  $  V(S\cup\{i\}) - V(S) = \frac{1}{2}\log\left(1 +  \T{x_i} A(S)^{-1}x_i\right)$.
Using this,
    \begin{displaymath}
        \partial_i F(\lambda) = \frac{1}{2}
        \sum_{\substack{S\subseteq\mathcal{N}\\ i\in\mathcal{N}\setminus S}}
        P_{\mathcal{N}\setminus\{i\}}^\lambda(S)
        \log\Big(1 + \T{x_i}A(S)^{-1}x_i\Big)
    \end{displaymath}
     The computation of the derivative of $L$ uses standard matrix
    calculus: writing $\tilde{A}(\lambda) \defeq I_d+\sum_{i\in
    \mathcal{N}}\lambda_ix_i\T{x_i}$,
    \begin{displaymath}
        \det \tilde{A}(\lambda + h\cdot e_i) = \det\big(\tilde{A}(\lambda)
        + hx_i\T{x_i}\big)
         =\det \tilde{A}(\lambda)\big(1+
        h\T{x_i}\tilde{A}(\lambda)^{-1}x_i\big).
    \end{displaymath}
    Hence,
    \begin{displaymath}
       \log\det\tilde{A}(\lambda + h\cdot e_i)= \log\det\tilde{A}(\lambda)
        + h\T{x_i}\tilde{A}(\lambda)^{-1}x_i + o(h),
    \end{displaymath}
    which implies
    \begin{displaymath}
        \partial_i L(\lambda)
        =\frac{1}{2} \T{x_i}\tilde{A}(\lambda)^{-1}x_i.
    \end{displaymath}
Recall from \eqref{eq:inverse} that the monotonicity of the matrix inverse over positive definite matrices implies 
\begin{gather*}
        \forall S\subseteq\mathcal{N},\quad A(S)^{-1} \succeq A(S\cup\{i\})^{-1}
\end{gather*}
as $A(S)\preceq A(S\cup\{i\})$. Observe that since $1\leq \lambda_i\leq 1$, 
$P_{\mathcal{N}\setminus\{i\}}^\lambda(S) \geq P_\mathcal{N}^\lambda(S)$ and
$P_{\mathcal{N}\setminus\{i\}}^\lambda(S)\geq P_{\mathcal{N}}^\lambda(S\cup\{i\})$
for all $S\subseteq\mathcal{N}\setminus\{i\}$. Hence,
\begin{align*}
    \partial_i F(\lambda) 
    & \geq \frac{1}{4}
    \sum_{\substack{S\subseteq\mathcal{N}\\ i\in\mathcal{N}\setminus S}}
    P_{\mathcal{N}}^\lambda(S)
    \log\Big(1 + \T{x_i}A(S)^{-1}x_i\Big)\\
    &+\frac{1}{4}
    \sum_{\substack{S\subseteq\mathcal{N}\\ i\in\mathcal{N}\setminus S}}
    P_{\mathcal{N}}^\lambda(S\cup\{i\})
    \log\Big(1 + \T{x_i}A(S\cup\{i\})^{-1}x_i\Big)\\
    &\geq \frac{1}{4}
    \sum_{S\subseteq\mathcal{N}}
    P_\mathcal{N}^\lambda(S)
    \log\Big(1 + \T{x_i}A(S)^{-1}x_i\Big).
\end{align*}
Using that $A(S)\succeq I_d$ we get that $\T{x_i}A(S)^{-1}x_i \leq
\norm{x_i}_2^2 \leq 1$. Moreover, $\log(1+x)\geq x$ for all $x\leq 1$.
Hence,
\begin{displaymath}
    \partial_i F(\lambda) \geq
    \frac{1}{4}
    \T{x_i}\bigg(\sum_{S\subseteq\mathcal{N}}P_\mathcal{N}^\lambda(S)A(S)^{-1}\bigg)x_i.
\end{displaymath}
Finally, using that the inverse is a matrix convex function over symmetric
positive definite matrices (see Appendix~\ref{app:properties}):
\begin{displaymath}
    \partial_i F(\lambda) \geq
    \frac{1}{4}
    \T{x_i}\bigg(\sum_{S\subseteq\mathcal{N}}P_\mathcal{N}^\lambda(S)A(S)\bigg)^{-1}x_i
    = \frac{1}{4}\T{x_i}\tilde{A}(\lambda)^{-1}x_i
    = \frac{1}{2}
    \partial_i L(\lambda).
\end{displaymath}

Having bound the ratio between the partial derivatives, we now bound the ratio
$F(\lambda)/L(\lambda)$ from below. Consider the following three cases.

First, if the minimum is attained as $\lambda$ converges to zero in,
\emph{e.g.}, the $l_2$ norm, by the Taylor approximation, one can write:
\begin{displaymath}
    \frac{F(\lambda)}{L(\lambda)}
    \sim_{\lambda\rightarrow 0}
    \frac{\sum_{i\in \mathcal{N}}\lambda_i\partial_i F(0)}
    {\sum_{i\in\mathcal{N}}\lambda_i\partial_i L(0)}
    \geq \frac{1}{2},
\end{displaymath}
\emph{i.e.}, the ratio $\frac{F(\lambda)}{L(\lambda)}$ is necessarily bounded
from below by 1/2 for small enough $\lambda$.

Second, if the minimum of the ratio $F(\lambda)/L(\lambda)$ is attained at
a vertex of the hypercube $[0,1]^n$ different from 0. $F$ and $L$ being
relaxations of the value function $V$, they are equal to $V$ on the vertices
which are exactly the binary points. Hence, the minimum is equal to 1 in this
case; in particular, it is greater than $1/2$.

Finally, if the minimum is attained at a point $\lambda^*$ with at least one
coordinate belonging to $(0,1)$, let $i$ be one such coordinate and consider
the function $G_i$:
\begin{displaymath}
    G_i: x \mapsto \frac{F}{L}(\lambda_1^*,\ldots,\lambda_{i-1}^*, x,
    \lambda_{i+1}^*, \ldots, \lambda_n^*).
\end{displaymath}
Then this function attains a minimum at $\lambda^*_i\in(0,1)$ and its
derivative is zero at this point. Hence:
\begin{displaymath}
    0 = G_i'(\lambda^*_i) = \partial_i\left(\frac{F}{L}\right)(\lambda^*).
\end{displaymath}
But $\partial_i(F/L)(\lambda^*)=0$ implies that
\begin{displaymath}
    \frac{F(\lambda^*)}{L(\lambda^*)} = \frac{\partial_i
    F(\lambda^*)}{\partial_i L(\lambda^*)}\geq \frac{1}{2}
\end{displaymath}
using the lower bound on the ratio of the partial derivatives. This concludes
the proof of the lemma. \qed
%\end{proof}

%We now prove that $F$ admits the following exchange property: let $\lambda$ be a feasible element of $[0,1]^n$, it is possible to trade one fractional component of $\lambda$ for another until one of them becomes integral, obtaining a new element $\tilde{\lambda}$ which is both feasible and for which $F(\tilde{\lambda})\geq F(\lambda)$. Here, by feasibility of a point $\lambda$, we mean that it satisfies the budget constraint $\sum_{i=1}^n \lambda_i c_i \leq B$.  This rounding property is referred to in the literature as \emph{cross-convexity} (see, \emph{e.g.}, \cite{dughmi}), or $\varepsilon$-convexity by \citeN{pipage}.

%\begin{lemma}[Rounding]\label{lemma:rounding}
%    For any feasible $\lambda\in[0,1]^{n}$, there exists a feasible
%    $\bar{\lambda}\in[0,1]^{n}$ such that at most one of its components is
%    fractional %, that is, lies in $(0,1)$ and:
%     and $F_{\mathcal{N}}(\lambda)\leq F_{\mathcal{N}}(\bar{\lambda})$.
%\end{lemma}
\subsection{Proof of Lemma~\ref{lemma:rounding}}\label{proofoflemmarounding}
%\begin{proof}
    We give a rounding procedure which, given a feasible $\lambda$ with at least
    two fractional components, returns some feasible $\lambda'$ with one fewer fractional
    component such that $F(\lambda) \leq F(\lambda')$.

    Applying this procedure recursively yields the lemma's result.
    Let us consider such a feasible $\lambda$. Let $i$ and $j$ be two
    fractional components of $\lambda$ and let us define the following
    function:
    \begin{displaymath}
        F_\lambda(\varepsilon) = F(\lambda_\varepsilon)
        \quad\textrm{where} \quad
        \lambda_\varepsilon = \lambda + \varepsilon\left(e_i-\frac{c_i}{c_j}e_j\right)
    \end{displaymath}
    It is easy to see that if $\lambda$ is feasible, then:
    \begin{equation}\label{eq:convex-interval}
        \forall\varepsilon\in\Big[\max\Big(-\lambda_i,(\lambda_j-1)\frac{c_j}{c_i}\Big), \min\Big(1-\lambda_i, \lambda_j
        \frac{c_j}{c_i}\Big)\Big],\;
            \lambda_\varepsilon\;\;\textrm{is feasible}
    \end{equation}
    Furthermore, the function $F_\lambda$ is convex; indeed:
    \begin{align*}
        F_\lambda(\varepsilon)
        & = \mathbb{E}_{S'\sim P_{\mathcal{N}\setminus\{i,j\}}^\lambda(S')}\Big[
        (\lambda_i+\varepsilon)\Big(\lambda_j-\varepsilon\frac{c_i}{c_j}\Big)V(S'\cup\{i,j\})\\
        & + (\lambda_i+\varepsilon)\Big(1-\lambda_j+\varepsilon\frac{c_i}{c_j}\Big)V(S'\cup\{i\})\\
        &+ (1-\lambda_i-\varepsilon)\Big(\lambda_j-\varepsilon\frac{c_i}{c_j}\Big)V(S'\cup\{j\})\\
         & + (1-\lambda_i-\varepsilon)\Big(1-\lambda_j+\varepsilon\frac{c_i}{c_j}\Big)V(S')\Big]
    \end{align*}
    Thus, $F_\lambda$ is a degree 2 polynomial whose dominant coefficient is:
    \begin{displaymath}
        \frac{c_i}{c_j}\mathbb{E}_{S'\sim
        P_{\mathcal{N}\setminus\{i,j\}}^\lambda(S')}\Big[
            V(S'\cup\{i\})+V(S'\cup\{i\})\\
        -V(S'\cup\{i,j\})-V(S')\Big]
    \end{displaymath}
    which is positive by submodularity of $V$. Hence, the maximum of
    $F_\lambda$ over the interval given in \eqref{eq:convex-interval} is
    attained at one of its limits, at which either the $i$-th or $j$-th component of
    $\lambda_\varepsilon$ becomes integral. \qed
%\end{proof}
\subsection{Proof of Proposition~\ref{prop:relaxation}}\label{proofofproprelaxation}
The lower bound on $L^*_c$ follows immediately from the fact that $L$ extends $V$ to $[0,1]^n$. For the upper bound, let us consider a feasible point $\lambda^*\in \dom_c$ such that
$L(\lambda^*) = L^*_c$. By applying Lemma~\ref{lemma:relaxation-ratio} and
Lemma~\ref{lemma:rounding} we get a feasible point $\bar{\lambda}$ with at most
one fractional component such that
\begin{equation}\label{eq:e1}
    L(\lambda^*) \leq 2 F(\bar{\lambda}).
\end{equation}
    Let $\lambda_i$ denote the fractional component of $\bar{\lambda}$ and $S$
    denote the set whose indicator vector is $\bar{\lambda} - \lambda_i e_i$.
    By definition of the multi-linear extension $F$:
    \begin{displaymath}
        F(\bar{\lambda}) = (1-\lambda_i)V(S) +\lambda_i V(S\cup\{i\}).
    \end{displaymath}
    By submodularity of $V$, $V(S\cup\{i\})\leq V(S) + V(\{i\})$. Hence,
    \begin{displaymath}
        F(\bar{\lambda}) \leq V(S) + V(i).
    \end{displaymath}
    Note that since $\bar{\lambda}$ is feasible, $S$ is also feasible and
    $V(S)\leq OPT$. Hence,
    \begin{equation}\label{eq:e2}
        F(\bar{\lambda}) \leq  OPT + \max_{i\in\mathcal{N}} V(i).
    \end{equation}
Together, \eqref{eq:e1} and \eqref{eq:e2} imply the proposition.\qed

\section{Proof of Proposition~\ref{prop:monotonicity}}\label{proofofpropmonotonicity}

%The $\log\det$ function is concave and self-concordant (see
%\cite{boyd2004convex}), in this case, the analysis of the barrier method in
%in \cite{boyd2004convex} (Section 11.5.5) can be summarized in the following
%lemma:

%\begin{lemma}\label{lemma:barrier}
%For any $\varepsilon>0$, the barrier method computes an $\varepsilon$-accurate
%approximation of $L^*_c$ in time $O(poly(n,d,\log\log\varepsilon^{-1})$.
%\end{lemma}
We begin by a description of Algorithm~\ref{alg:monotone} which computes an approximation of $L^*_c$, which is arbitrarily accurate \emph{and} $\delta$-decreasing. We achieve this by restricting the optimization over a subset of $\dom_c$ at which the concave relaxation $L$ is ``sufficiently'' concave. Formally, for $\alpha\geq 0$ let $$\textstyle\dom_{c,\alpha} \defeq \{\lambda \in [\alpha,1]^n: \sum_{i\in \mathcal{N}}c_i\lambda_i \leq B\}\subseteq  \dom_c . $$ 
Note that $\dom_c=\dom_{c,0}.$ Consider the following perturbation of the concave relaxation \eqref{eq:primal}:
\begin{align}\tag{$P_{c,\alpha}$}\label{eq:perturbed-primal}
\begin{split}  \text{Maximize:} &\qquad L(\lambda)\\
\text{subject to:} & \qquad\lambda \in \dom_{c,\alpha}
\end{split}
\end{align}

%Note, that the feasible set in Problem~\eqref{eq:primal} increases (for the
%inclusion) when the cost decreases. 
%non-increasing.

%Furthermore, \eqref{eq:primal} being a convex optimization problem, using
%standard convex optimization algorithms (Lemma~\ref{lemma:barrier} gives
%a formal statement for our specific problem) we can compute
%a $\varepsilon$-accurate approximation of its optimal value as defined below.

%\begin{definition}
%$a$ is an $\varepsilon$-accurate approximation of $b$ iff $|a-b|\leq \varepsilon$.
%\end{definition}

%Note however that an $\varepsilon$-accurate approximation of a non-increasing
%function is not in general non-increasing itself. The goal of this section is
%to approximate $L^*_c$ while preserving monotonicity. The estimator we
%construct has a weaker form of monotonicity that we call
%\emph{$\delta$-monotonicity}.

%\begin{definition}
%Let $f$ be a function from $\reals^n$ to $\reals$, we say that $f$ is
%\emph{$\delta$-increasing along the $i$-th coordinate} iff:
%\begin{equation}\label{eq:dd}
%    \forall x\in\reals^n,\;
%    \forall \mu\geq\delta,\;
%    f(x+\mu e_i)\geq f(x)
%\end{equation}
%where $e_i$ is the $i$-th canonical basis vector of $\reals^n$. By extension,
%$f$ is $\delta$-increasing iff it is $\delta$-increasing along all coordinates.

%We define \emph{$\delta$-decreasing} functions by reversing the inequality in
%\eqref{eq:dd}.
%\end{definition}

%We consider a perturbation of \eqref{eq:primal} by introducing:
%\begin{equation}\tag{$P_{c, \alpha}$}\label{eq:perturbed-primal}
%    L^*_{c,\alpha} \defeq \max_{\lambda\in[\alpha, 1]^{n}}
%    \left\{L(\lambda) \Big| \sum_{i=1}^{n} \lambda_i c_i
%    \leq B\right\}
%\end{equation}
%Note that we have $L^*_c = L^*_c(0)$.  We will also assume that
%$\alpha<\frac{1}{nB}$ so that \eqref{eq:perturbed-primal} has at least one
%feasible point: $(\frac{1}{nB},\ldots,\frac{1}{nB})$. By computing
%an approximation of $L^*_{c,\alpha}$ as in Algorithm~\ref{alg:monotone}, we
%obtain a $\delta$-decreasing approximation of $L^*_c$.

\begin{algorithm}[t]
    \caption{}\label{alg:monotone}
    \begin{algorithmic}[1]
	\Require{ $B\in \reals_+$, $c\in[0,B]^n$, $\delta\in (0,1]$, $\epsilon\in (0,1]$ }
        \State $\alpha \gets \varepsilon (\delta/B+n^2)^{-1}$ 
        \State Use the barrier method to solve \eqref{eq:perturbed-primal} with
        accuracy $\varepsilon'=\frac{1}{2^{n+1}B}\alpha\delta b$; denote the output by $\hat{L}^*_{c,\alpha}$
	\State \textbf{return} $\hat{L}^*_{c,\alpha}$
    \end{algorithmic}
\end{algorithm}

Our construction of a $\delta$-decreasing, $\varepsilon$-accurate approximator of $L_c^*$ proceeds as follows: first, it computes an appropriately selected lower bound $\alpha$; using this bound, it solves the perturbed problem \eqref{eq:perturbed-primal} using the barrier method, also at an appropriately selected accuracy $\varepsilon'$, obtaining thus a $\varepsilon'$-accurate approximation of $L^*_{c,\alpha}\defeq \max_{\lambda\in \dom_{c,\alpha}} L(\lambda)$ . The corresponding output is returned as an approximation of $L^*_c$. A summary of the algorithm and the specific choices of $\alpha$ and $\varepsilon'$ are given in Algorithm~\ref{alg:monotone}. We proceed by showing that the optimal value of \eqref{eq:perturbed-primal} is close to the
optimal value of \eqref{eq:primal} (Lemma~\ref{lemma:proximity}) while being
well-behaved with respect to changes of the cost
(Lemma~\ref{lemma:monotonicity}). These lemmas together imply
Proposition~\ref{prop:monotonicity}.

We note that the execution of the barrier method on the restricted set $\dom_{c,\alpha}$ is necessary. The algorithm's output when executed over the entire domain may not necessarily be $\delta$-decreasing, even when the approximation accuracy is small. This is because costs become saturated when the optimal $\lambda\in \dom_c$ lies at the boundary: increasing them has no effect on the objective. Forcing the optimization to happen ``off'' the boundary ensures that this does not occur, while taking $\alpha$ to be small ensures that this perturbation does not cost much in terms of approximation accuracy.

Note that the choice of $\alpha$ given in Algorithm~\ref{alg:monotone} implies
that $\alpha<\frac{1}{n}$. This in turn implies that the feasible set
$\mathcal{D}_{c, \alpha}$ of \eqref{eq:perturbed-primal} is non-empty: it
contains the strictly feasible point $\lambda=(\frac{1}{n},\ldots,\frac{1}{n})$.

\begin{lemma}\label{lemma:derivative-bounds}
    Let $\partial_i L(\lambda)$ denote the $i$-th derivative of $L$, for $i\in\{1,\ldots, n\}$, then:
    \begin{displaymath}
        \forall\lambda\in[0, 1]^n,\;\frac{b}{2^n} \leq \partial_i L(\lambda) \leq 1
    \end{displaymath}
\end{lemma}

\begin{proof}
    Recall that we had defined:
    \begin{displaymath}
        \tilde{A}(\lambda)\defeq I_d + \sum_{i=1}^n \lambda_i x_i\T{x_i}
        \quad\mathrm{and}\quad
        A(S) \defeq I_d + \sum_{i\in S} x_i\T{x_i}
    \end{displaymath}
    Let us also define $A_k\defeq A(\{x_1,\ldots,x_k\})$.
    We have $\partial_i L(\lambda) = \T{x_i}\tilde{A}(\lambda)^{-1}x_i$. Since
    $\tilde{A}(\lambda)\succeq I_d$, $\partial_i L(\lambda)\leq \T{x_i}x_i \leq 1$, which
    is the right-hand side  of the lemma.
    For the left-hand side, note that $\tilde{A}(\lambda) \preceq A_n$. Hence
    $\partial_iL(\lambda)\geq \T{x_i}A_n^{-1}x_i$.
    Using the Sherman-Morrison formula \cite{sm}, for all $k\geq 1$:
    \begin{displaymath}
        \T{x_i}A_k^{-1} x_i = \T{x_i}A_{k-1}^{-1}x_i 
        - \frac{(\T{x_i}A_{k-1}^{-1}x_k)^2}{1+\T{x_k}A_{k-1}^{-1}x_k}
    \end{displaymath}
    By the Cauchy-Schwarz inequality:
    \begin{displaymath}
        (\T{x_i}A_{k-1}^{-1}x_k)^2 \leq \T{x_i}A_{k-1}^{-1}x_i\;\T{x_k}A_{k-1}^{-1}x_k
    \end{displaymath}
    Hence:
    \begin{displaymath}
        \T{x_i}A_k^{-1} x_i \geq \T{x_i}A_{k-1}^{-1}x_i 
        - \T{x_i}A_{k-1}^{-1}x_i\frac{\T{x_k}A_{k-1}^{-1}x_k}{1+\T{x_k}A_{k-1}^{-1}x_k}
    \end{displaymath}
    But $\T{x_k}A_{k-1}^{-1}x_k\leq 1$ and $\frac{a}{1+a}\leq \frac{1}{2}$ if
    $0\leq a\leq 1$, so:
    \begin{displaymath}
        \T{x_i}A_{k}^{-1}x_i \geq \T{x_i}A_{k-1}^{-1}x_i
        - \frac{1}{2}\T{x_i}A_{k-1}^{-1}x_i\geq \frac{\T{x_i}A_{k-1}^{-1}x_i}{2}
    \end{displaymath}
    By induction:
    \begin{displaymath}
        \T{x_i}A_n^{-1} x_i \geq \frac{\T{x_i}x_i}{2^n}
    \end{displaymath}
    Using that $\T{x_i}{x_i}\geq b$ concludes the proof of the left-hand side
    of the lemma's inequality.
\end{proof}
Let us introduce the Lagrangian of problem \eqref{eq:perturbed-primal}:

\begin{displaymath}
    \mathcal{L}_{c, \alpha}(\lambda, \mu, \nu, \xi) \defeq L(\lambda) 
    + \T{\mu}(\lambda-\alpha\mathbf{1}) + \T{\nu}(\mathbf{1}-\lambda) + \xi(B-\T{c}\lambda)
\end{displaymath}
so that:
\begin{displaymath}
    L^*_{c,\alpha} = \min_{\mu, \nu, \xi\geq 0}\max_\lambda \mathcal{L}_{c, \alpha}(\lambda, \mu, \nu, \xi)
\end{displaymath}
Similarly, we define $\mathcal{L}_{c}\defeq\mathcal{L}_{c, 0}$ the lagrangian of \eqref{eq:primal}.

Let $\lambda^*$ be primal optimal for \eqref{eq:perturbed-primal}, and $(\mu^*,
\nu^*, \xi^*)$ be dual optimal for the same problem. In addition to primal and
dual feasibility, the Karush-Kuhn-Tucker (KKT) conditions \cite{boyd2004convex} give $\forall i\in\{1, \ldots, n\}$:
\begin{gather*}
    \partial_i L(\lambda^*) + \mu_i^* - \nu_i^* - \xi^* c_i = 0\\
    \mu_i^*(\lambda_i^* - \alpha) = 0\\
    \nu_i^*(1 - \lambda_i^*) = 0
\end{gather*}

\begin{lemma}\label{lemma:proximity}
We have:
\begin{displaymath}
    L^*_c - \alpha n^2\leq L^*_{c,\alpha} \leq L^*_c
\end{displaymath}
In particular, $|L^*_c - L^*_{c,\alpha}| \leq \alpha n^2$.
\end{lemma}

\begin{proof}
    $\alpha\mapsto L^*_{c,\alpha}$ is a decreasing function as it is the
    maximum value of the $L$ function over a set-decreasing domain, which gives
    the rightmost inequality.

    Let $\mu^*, \nu^*, \xi^*$ be dual optimal for $(P_{c, \alpha})$, that is:
    \begin{displaymath}
        L^*_{c,\alpha} = \max_\lambda \mathcal{L}_{c, \alpha}(\lambda, \mu^*, \nu^*, \xi^*)
    \end{displaymath}

    Note that $\mathcal{L}_{c, \alpha}(\lambda, \mu^*, \nu^*, \xi^*)
    = \mathcal{L}_{c}(\lambda, \mu^*, \nu^*, \xi^*)
    - \alpha\T{\mathbf{1}}\mu^*$, and that for any $\lambda$ feasible for
    problem \eqref{eq:primal}, $\mathcal{L}_{c}(\lambda, \mu^*, \nu^*, \xi^*)
    \geq L(\lambda)$. Hence,
    \begin{displaymath}
        L^*_{c,\alpha} \geq L(\lambda) - \alpha\T{\mathbf{1}}\mu^*
    \end{displaymath}
    for any $\lambda$ feasible for \eqref{eq:primal}. In particular, for $\lambda$ primal optimal for $\eqref{eq:primal}$:
    \begin{equation}\label{eq:local-1}
        L^*_{c,\alpha} \geq L^*_c - \alpha\T{\mathbf{1}}\mu^*
    \end{equation}

    Let us denote by the $M$ the support of $\mu^*$, that is $M\defeq
    \{i|\mu_i^* > 0\}$, and by $\lambda^*$ a primal optimal point for
    $\eqref{eq:perturbed-primal}$.  From the KKT conditions we see that:
    \begin{displaymath}
        M \subseteq \{i|\lambda_i^* = \alpha\}
    \end{displaymath}


    Let us first assume that $|M| = 0$, then $\T{\mathbf{1}}\mu^*=0$ and the lemma follows.

    We will now assume that $|M|\geq 1$. In this case $\T{c}\lambda^*
    = B$, otherwise we could increase the coordinates of $\lambda^*$ in $M$,
    which would increase the value of the objective function and contradict the
    optimality of $\lambda^*$. Note also, that $|M|\leq n-1$, otherwise, since
    $\alpha< \frac{1}{n}$, we would have $\T{c}\lambda^*\ < B$, which again
    contradicts the optimality of $\lambda^*$. Let us write:
    \begin{displaymath}
        B = \T{c}\lambda^* = \alpha\sum_{i\in M}c_i + \sum_{i\in \bar{M}}\lambda_i^*c_i
        \leq \alpha |M|B + (n-|M|)\max_{i\in \bar{M}} c_i
    \end{displaymath}
    That is:
    \begin{equation}\label{local-2}
        \max_{i\in\bar{M}} c_i \geq \frac{B - B|M|\alpha}{n-|M|}> \frac{B}{n}
    \end{equation}
    where the last inequality uses again that $\alpha<\frac{1}{n}$. From the
    KKT conditions, we see that for $i\in M$, $\nu_i^* = 0$ and:
    \begin{equation}\label{local-3}
        \mu_i^* = \xi^*c_i - \partial_i L(\lambda^*)\leq \xi^*c_i\leq \xi^*B
    \end{equation}
    since $\partial_i L(\lambda^*)\geq 0$ and $c_i\leq 1$.

    Furthermore, using the KKT conditions again, we have that:
    \begin{equation}\label{local-4}
        \xi^* \leq \inf_{i\in \bar{M}}\frac{\partial_i L(\lambda^*)}{c_i}\leq \inf_{i\in \bar{M}} \frac{1}{c_i}
        = \frac{1}{\max_{i\in\bar{M}} c_i}
    \end{equation}
    where the last inequality uses Lemma~\ref{lemma:derivative-bounds}.
    Combining \eqref{local-2}, \eqref{local-3} and \eqref{local-4}, we get that:
    \begin{displaymath}
        \sum_{i\in M}\mu_i^* \leq |M|\xi^*B \leq n\xi^*B\leq \frac{nB}{\max_{i\in\bar{M}} c_i} \leq n^2
    \end{displaymath}
    This implies that:
    \begin{displaymath}
        \T{\mathbf{1}}\mu^* = \sum_{i=1}^n \mu^*_i = \sum_{i\in M}\mu_i^*\leq n^2
    \end{displaymath}
    which along with \eqref{eq:local-1} proves the lemma.
\end{proof} 

\begin{lemma}\label{lemma:monotonicity}
    If $c'$ = $(c_i', c_{-i})$, with $c_i'\leq c_i - \delta$, we have:
    \begin{displaymath}
        L^*_{c',\alpha} \geq L^*_{c,\alpha} + \frac{\alpha\delta b}{2^nB}
    \end{displaymath}
\end{lemma}

\begin{proof}
    Let $\mu^*, \nu^*, \xi^*$ be dual optimal for $(P_{c', \alpha})$. Noting that:
    \begin{displaymath} 
    \mathcal{L}_{c', \alpha}(\lambda, \mu^*, \nu^*, \xi^*) \geq
    \mathcal{L}_{c, \alpha}(\lambda, \mu^*, \nu^*, \xi^*) + \lambda_i\xi^*\delta,
    \end{displaymath}
    we get similarly to Lemma~\ref{lemma:proximity}:
    \begin{displaymath}
        L^*_{c',\alpha} \geq L(\lambda) + \lambda_i\xi^*\delta
    \end{displaymath}
    for any $\lambda$ feasible for \eqref{eq:perturbed-primal}. In particular, for $\lambda^*$ primal optimal for \eqref{eq:perturbed-primal}:
    \begin{displaymath}
        L^*_{c',\alpha} \geq L^*_{c,\alpha} + \alpha\xi^*\delta
    \end{displaymath}
    since $\lambda_i^*\geq \alpha$.

    Using the KKT conditions for $(P_{c', \alpha})$, we can write:
    \begin{displaymath}
        \xi^* = \inf_{i:\lambda^{'*}_i>\alpha} \frac{\T{x_i}S(\lambda^{'*})^{-1}x_i}{c_i'}
    \end{displaymath}
    with $\lambda^{'*}$ optimal for $(P_{c', \alpha})$. Since $c_i'\leq B$,
    using Lemma~\ref{lemma:derivative-bounds}, we get that $\xi^*\geq
    \frac{b}{2^nB}$, which concludes the proof.
\end{proof}

%\subsection*{End of the proof of Proposition~\ref{prop:monotonicity}}
We are now ready to conclude the  proof of Proposition~\ref{prop:monotonicity}.
Let $\hat{L}^*_{c,\alpha}$ be the approximation computed by
Algorithm~\ref{alg:monotone}.
\begin{enumerate}
    \item using Lemma~\ref{lemma:proximity}:
\begin{displaymath}
        |\hat{L}^*_{c,\alpha} - L^*_c| \leq |\hat{L}^*_{c,\alpha} - L^*_{c,\alpha}| + |L^*_{c,\alpha} - L^*_c|
        \leq \frac{\alpha\delta}{B} + \alpha n^2 = \varepsilon
\end{displaymath}
which proves the $\varepsilon$-accuracy.

\item for the $\delta$-decreasingness, let $c' = (c_i', c_{-i})$ with $c_i'\leq
    c_i-\delta$, then:
\begin{displaymath}
    \hat{L}^*_{c',\alpha} \geq L^*_{c',\alpha} - \frac{\alpha\delta b}{2^{n+1}B} 
                     \geq L^*_{c,\alpha} + \frac{\alpha\delta b}{2^{n+1}B}
    \geq \hat{L}^*_{c,\alpha}
\end{displaymath}
where the first and last inequalities follow from the accuracy of the approximation, and
the inner inequality follows from Lemma~\ref{lemma:monotonicity}.

\item the accuracy of the approximation $\hat{L}^*_{c,\alpha}$ is:
\begin{displaymath}
    \varepsilon' =\frac{\varepsilon\delta b}{2^{n+1}(\delta + n^2B)}
\end{displaymath}

Note that:
\begin{displaymath}
    \log\log (\varepsilon')^{-1} = O\bigg(\log\log\frac{B}{\varepsilon\delta b} + \log n\bigg)
\end{displaymath}
Using Lemma~\ref{lemma:barrier} concludes the proof of the running time.\qed
\end{enumerate}

\section{Budget Feasible Reverse Auction Mechanisms}\label{app:budgetfeasible}
We review in this appendix the formal definition of a budget feasible reverse auction mechanisms, as introduced by \citeN{singer-mechanisms}. We depart from the definitions in \cite{singer-mechanisms} only in considering $\delta$-truthful, rather than truthful, mechanisms.

Given a budget $B$ and a value function $V:2^{\mathcal{N}}\to\reals_+$, a \emph{mechanism} $\mathcal{M} = (S,p)$ comprises (a) an \emph{allocation function} 
$S:\reals_+^n \to 2^\mathcal{N}$ and (b) a \emph{payment function}
$p:\reals_+^n\to \reals_+^n$. 
 Let $s_i(c) = \id_{i\in S(c)}$ be the binary indicator of  $i\in S(c)$. We seek mechanisms that have the following properties \cite{singer-mechanisms}:
\begin{itemize}
\item \emph{Normalization.} Unallocated experiments receive zero payments: $s_i(c)=0$ implies $p_i(c)=0.\label{normal}$
\item\emph{Individual Rationality.} Payments for allocated experiments exceed
costs: $p_i(c)\geq c_i\cdot s_i(c).\label{ir}$
\item \emph{No Positive Transfers.} Payments are non-negative: $p_i(c)\geq 0\label{pt}$.
\item \emph{$\delta$-Truthfulness.} Reporting one's true cost is
an \emph{almost-dominant} \cite{schummer2004almost} strategy. Formally, let $c_{-i}$
 be a vector of costs of all agents except $i$. Then, $p_i(c_i,c_{-i})
 - s_i(c_i,c_{-i})\cdot c_i \geq p_i(c_i',c_{-i}) - s_i(c_i',c_{-i})\cdot c_i,
 $ for every $i \in \mathcal{N}$ and every two cost vectors $(c_i,c_{-i})$ and $(c_i',c_{-i})$ such that $|c_i-c_i'|>\delta.$ The mechanism is \emph{truthful} if $\delta=0$.
 \item \emph{Budget Feasibility.} The sum of the payments should not exceed the
    budget constraint, \emph{i.e.} $\sum_{i\in\mathcal{N}} p_i(c) \leq
    B.\label{budget}$


   \item \emph{$(\alpha,\beta)$-approximation.} The value of the allocated set  should not
    be too far from the optimum value of the full information case, as given by  \eqref{eq:non-strategic}. 
Formally, there must exist some $\alpha\geq 1$ and $\beta>0$
    such that $OPT \leq \alpha V(S(p))+\beta$, where     $OPT = \max_{S\subseteq\mathcal{N}} \left\{V(S) \;\mid \;
    \sum_{i\in S}c_i\leq B\right\}$.

 %   The approximation ratio captures the \emph{price of truthfulness}, \emph{i.e.},  the relative value loss incurred by adding the truthfulness constraint. % to the value function maximization.
    %We stress here that the approximation ratio is defined with respect \emph{to the maximal value in the full information case}.
    \item \emph{Computational Efficiency.} The allocation and payment function
    should be computable in time polynomial in various parameters. 
    %time in the number of agents $n$. %\thibaut{Should we say something about the black-box model for $V$?  Needed to say something in general, but not in our case where the value function can be computed in polynomial time}.
\end{itemize}
\section{Proof of Lemma~\ref{thm:myerson-variant}}\label{sec:myerson}
\input{myerson}

\section{Description of our mechanism for \EDP{} and proof of Theorem~\ref{thm:main}}\label{sec:proofofmainthm}

We begin by a description of the methodology used to construct our mechanism.
Recall from Section~\ref{sec:fullinfo} that $i^*\defeq \arg\max_{i\in
\mathcal{N}} V(\{i\})$ is the element of maximum value, and $S_G$ is a set
constructed greedily, by selecting elements of maximum marginal value per cost.
The general framework used by \citeN{chen}  and by \citeN{singer-influence} for
the \textsc{Knapsack}   and \textsc{Coverage} value functions contructs an
allocation as follows. First, a polynomial-time, monotone approximation of
$OPT$ is computed over all elements excluding $i^*$. The outcome of this
approximation is compared to $V(\{i^*\})$: if it exceeds $V(\{i^*\})$, then the
mechanism constructs an allocation $S_G$ greedily; otherwise, the only item
allocated is the singleton $\{i^*\}$.  Provided that the approximation used is
within a constant from $OPT$, the above allocation can be shown to also yield
a constant approximation to $OPT$. Furthermore, using Myerson's
Theorem~\cite{myerson}, it can be shown that this allocation combined with
\emph{threshold payments} (see Lemma~\ref{thm:myerson-variant} below)
constitute a truthful mechanism. 

The approximation algorithms used in \cite{chen,singer-influence} are LP
relaxations, and thus their outputs are monotone and can be computed exactly in
polynomial time. We show that the convex relaxation \eqref{eq:primal}, which
can be solved by an $\epsilon$-accurate, $\delta$-decreasing algorithm, can be
used to construct a $\delta$-truthful, constant approximation mechanism, by
being incorporated in the same framework.

To obtain this result, we use the following modified version of Myerson's theorem \cite{myerson}, whose proof we provide in Appendix~\ref{sec:myerson}.
%
%Instead, \citeN{singer-mechanisms} and \citeN{chen}
%suggest to approximate $OPT_{-i^*}$ by a quantity $OPT'_{-i^*}$ satisfying the
%following properties:
%\begin{itemize}
%    \item $OPT'_{-i^*}$ must not depend on agent $i^*$'s reported cost and must
%    be decreasing with respect to the costs. This is to ensure the monotonicity
%    of the allocation function.
%    \item $OPT'_{-i^*}$ must be close to $OPT_{-i^*}$ to maintain a bounded
%    approximation ratio.
%    \item $OPT'_{-i^*}$ must be computable in polynomial time.
%\end{itemize}
%
%One of the main technical contributions of \citeN{chen} and
%\citeN{singer-influence} is to come up with appropriate such quantity by
%considering relaxations of \textsc{Knapsack} and \textsc{Coverage},
%respectively.
%
%\subsection{Our Approach}
%
%Using the results from Section~\ref{sec:approximation}, we come up with
%a suitable approximation $OPT_{-i^*}'$ of $OPT_{-i^*}$. Our approximation being
%$\delta$-decreasing, the resulting mechanism will be $\delta$-truthful as
%defined below.
%
%\begin{definition}
%Let $\mathcal{M}= (S, p)$ a mechanism, and let $s_i$ denote the indicator
%function of $i\in S(c)$, $s_i(c) \defeq \id_{i\in S(c)}$. We say that $\mathcal{M}$ is
%$\delta$-truthful iff:
%\begin{displaymath}
%\forall c\in\reals_+^n,\;
%\forall\mu\;\text{with}\; |\mu|\geq\delta,\;
%\forall i\in\{1,\ldots,n\},\;
%p(c)-s_i(c)\cdot c_i \geq p(c+\mu e_i) - s_i(c+\mu e_i)\cdot c_i
%\end{displaymath}
%where $e_i$ is the $i$-th canonical basis vector of $\reals^n$.
%\end{definition}
%
%Intuitively, $\delta$-truthfulness implies that agents have no incentive to lie
%by more than $\delta$ about their reported costs. In practical applications,
%the bids being discretized, if $\delta$ is smaller than the discretization
%step, the mechanism will be truthful in effect.

%$\delta$-truthfulness will follow from $\delta$-monotonicity by the following
%variant of Myerson's theorem.

\begin{lemma}\label{thm:myerson-variant}
 A normalized mechanism $\mathcal{M} = (S,p)$ for a single parameter auction is
$\delta$-truthful if:
(a) $S$ is $\delta$-monotone, \emph{i.e.}, for any agent $i$ and $c_i' \leq
c_i-\delta$, for any
fixed costs $c_{-i}$ of agents in $\mathcal{N}\setminus\{i\}$, $i\in S(c_i,
c_{-i})$ implies $i\in S(c_i', c_{-i})$, and (b)
 agents are paid \emph{threshold payments}, \emph{i.e.}, for all $i\in S(c)$, $p_i(c)=\inf\{c_i': i\in S(c_i', c_{-i})\}$.
\end{lemma}
Lemma~\ref{thm:myerson-variant} allows us to incorporate our relaxation in the
above framework, yielding Theorem~\ref{thm:main}.

\begin{algorithm}[!t]
    \caption{Mechanism for \SEDP{}}\label{mechanism}
    \begin{algorithmic}[1]
    %\State $\mathcal{N} \gets \mathcal{N}\setminus\{i\in\mathcal{N} : c_i > B\}$
	\Require{ $B\in \reals_+$,$c\in[0,B]^n$, $\delta\in (0,1]$, $\epsilon\in (0,1]$ }
    \State $i^* \gets \argmax_{j\in\mathcal{N}}V(j)$
    \State \label{relaxexec}$OPT'_{-i^*} \gets$ using Proposition~\ref{prop:monotonicity},
    compute a $\varepsilon$-accurate, $\delta$-decreasing
    approximation of $$\textstyle L^*_{c_{-i^*}}\defeq\max_{\lambda\in[0,1]^{n}} \{L(\lambda)
                                    \mid \lambda_{i^*}=0,\sum_{i \in \mathcal{N}\setminus\{i^*\}}c_i\lambda_i\leq B\}$$
        %\Statex
     \State $C \gets \frac{8e-1 + \sqrt{64e^2-24e + 9}}{2(e-1)}$

        \If{$OPT'_{-i^*} < C \cdot V(i^*)$} \label{c} 
       \State \textbf{return} $\{i^*\}$ 
        \Else
            \State $i \gets \argmax_{1\leq j\leq n}\frac{V(j)}{c_j}$
	    \State $S_G \gets \emptyset$
            \While{$c_i\leq \frac{B}{2}\frac{V(S_G\cup\{i\})-V(S_G)}{V(S_G\cup\{i\})}$}
                \State $S_G \gets S_G\cup\{i\}$ 
 \State $i \gets \argmax_{j\in\mathcal{N}\setminus S_G}
                \frac{V(S_G\cup\{j\})-V(S_G)}{c_j}$
            \EndWhile
            \State \textbf{return} $S_G$
        \EndIf
    \end{algorithmic}
\end{algorithm}


We now present the proof of Theorem~\ref{thm:main}. 
Our mechanism for \EDP{} is composed of
(a) the allocation function presented in Algorithm~\ref{mechanism}, and 
(b) the payment function which pays each allocated agent $i$ her threshold
payment as described in Myerson's Theorem.  In the case where $\{i^*\}$ is the
allocated set, her threshold payment is $B$. %(she would be have been dropped on
%line 1 of Algorithm~\ref{mechanism} had she reported a higher cost).
A closed-form formula for threshold payments when $S_G$ is the allocated set can
be found in~\cite{singer-mechanisms}. 


We use the notation $OPT_{-i^*}$ to denote the optimal value of \EDP{} when the maximum value element $i^*$ is  excluded. We also use $OPT'_{-i^*}$ to denote the approximation computed by the $\delta$-decreasing, $\epsilon$-accurate approximation of $L^*_{c_{-i^*}}$, as defined in Algorithm~\ref{mechanism}.


The properties of $\delta$-truthfulness and
individual rationality follow from $\delta$-monotonicity and threshold
payments. $\delta$-monotonicity and budget feasibility follow  similar steps as the
analysis of \citeN{chen}, adapted to account for $\delta$-monotonicity:
\begin{lemma}\label{lemma:monotone}
Our mechanism for \EDP{} is $\delta$-monotone and budget feasible.
\end{lemma}

\begin{proof}
    Consider an agent $i$ with cost $c_i$ that is
    selected by the mechanism, and suppose that she reports
    a cost $c_i'\leq c_i-\delta$ while all  other costs stay the same.
    Suppose that when $i$ reports $c_i$, $OPT'_{-i^*} \geq C V(i^*)$; then, as $s_i(c_i,c_{-i})=1$, $i\in S_G$.
     By reporting cost $c_i'$, $i$ may be selected at an earlier iteration of the greedy algorithm.
    %using the submodularity of $V$, we see that $i$ will satisfy the greedy
    %selection rule:
    %\begin{displaymath}
    %    i = \argmax_{j\in\mathcal{N}\setminus S} \frac{V(S\cup\{j\})
    %    - V(S)}{c_j}
    %\end{displaymath}
    %in an earlier iteration of the greedy heuristic.
 Denote by $S_i$
    (resp. $S_i'$) the set to which $i$ is added when reporting cost $c_i$
    (resp. $c_i'$). We have $S_i'\subseteq S_i$; in addition, $S_i'\subseteq S_G'$, the set selected by the greedy algorithm under $(c_i',c_{-i})$; if not, then greedy selection would terminate prior to selecting $i$ also when she reports $c_i$, a contradiction. Moreover, we have
    \begin{align*}
        c_i' & \leq c_i \leq
        \frac{B}{2}\frac{V(S_i\cup\{i\})-V(S_i)}{V(S_i\cup\{i\})}
         \leq \frac{B}{2}\frac{V(S_i'\cup\{i\})-V(S_i')}{V(S_i'\cup\{i\})}
    \end{align*}
    by the monotonicity and submodularity  of $V$. Hence  $i\in S_G'$. By
    $\delta$-decreasingness of
    $OPT'_{-i^*}$, under $c'_i\leq c_i-\delta$ the greedy set is still allocated and $s_i(c_i',c_{-i}) =1$.
    Suppose now that when $i$ reports $c_i$, $OPT'_{-i^*} < C V(i^*)$. Then $s_i(c_i,c_{-i})=1$ iff $i = i^*$. 
    Reporting $c_{i^*}'\leq c_{i^*}$ does not change $V(i^*)$ nor
    $OPT'_{-i^*} \leq C V(i^*)$; thus $s_{i^*}(c_{i^*}',c_{-i^*})=1$, so the mechanism is monotone.

To show budget feasibility, suppose that $OPT'_{-i^*} < C V(i^*)$. Then the mechanism selects $i^*$. Since the bid of $i^*$ does not affect the above condition, the threshold payment of $i^*$ is $B$ and the mechanism is budget feasible.
Suppose  that $OPT'_{-i^*} \geq C V(i^*)$. 
Denote by $S_G$ the set selected by the greedy algorithm, and for $i\in S_G$,  denote by
$S_i$ the subset of the solution set that was selected by the greedy algorithm just prior to the addition of $i$---both sets determined for the present cost vector $c$. 
%Chen \emph{et al.}~\cite{chen} show that, 
Then for any submodular function $V$, and for all $i\in S_G$:
%the reported cost of an agent selected by the greedy heuristic, and holds for
%any submodular function $V$:
\begin{equation}\label{eq:budget}
   \text{if}~c_i'\geq \frac{V(S_i\cup\{i\}) - V(S)}{V(S_G)} B~\text{then}~s_i(c_i',c_{-i})=0
\end{equation}
In other words, if $i$ increases her cost to a value higher than $\frac{V(S_i\cup\{i\}) - V(S)}{V(S_G)}$, she will cease to be in the selected set $S_G$. As a result,
\eqref{eq:budget}
implies that the threshold payment of user $i$ is bounded by the above quantity.
%\begin{displaymath}
%\frac{V(S_i\cup\{i\}) - V(S_i)}{V(S_G)} =  B
%\end{displaymath}
Hence, the total payment is bounded by the telescopic sum:
\begin{displaymath}
    \sum_{i\in S_G} \frac{V(S_i\cup\{i\}) - V(S_i)}{V(S_G)} B = \frac{V(S_G)-V(\emptyset)}{V(S_G)} B=B\qedhere
\end{displaymath}
\end{proof}

The complexity of the mechanism is given by the following lemma.

\begin{lemma}[Complexity]\label{lemma:complexity}
    For any $\varepsilon > 0$ and any $\delta>0$, the complexity of the mechanism  is
    $O\big(poly(n, d, \log\log\frac{B}{b\varepsilon\delta})\big)$
\end{lemma}

\begin{proof}
    The value function $V$ in \eqref{modified} can be computed in time
    $O(\text{poly}(n, d))$ and the mechanism only involves a linear
    number of queries to the function $V$. 
    By Proposition~\ref{prop:monotonicity}, line \ref{relaxexec} of Algorithm~\ref{mechanism}
    can be computed in time
    $O(\text{poly}(n, d, \log\log \frac{B}{b\varepsilon\delta}))$. Hence the allocation
    function's complexity is as stated. 
    %Payments can be easily computed in time  $O(\text{poly}(n, d))$ as in prior work.
\junk{
    Using Singer's characterization of the threshold payments
    \cite{singer-mechanisms}, one can verify that they can be computed in time
    $O(\text{poly}(n, d))$.
    }
\end{proof}

Finally, we prove the approximation ratio of the mechanism.
We use the following lemma from \cite{chen} which bounds $OPT$ in terms of
the value of $S_G$, as computed in Algorithm \ref{mechanism}, and $i^*$, the
element of maximum value.

\begin{lemma}[\cite{chen}]\label{lemma:greedy-bound}
Let $S_G$ be the set computed in Algorithm \ref{mechanism} and let 
$i^*=\argmax_{i\in\mathcal{N}} V(\{i\})$. We have:
\begin{displaymath}
OPT \leq \frac{e}{e-1}\big( 3 V(S_G) + 2 V(i^*)\big).
\end{displaymath}
\end{lemma}

Using Proposition~\ref{prop:relaxation} and Lemma~\ref{lemma:greedy-bound} we
can complete the proof of the approximation ratio of our mechanism
Theorem~\ref{thm:main} by showing that, for any $\varepsilon > 0$, if
$OPT_{-i}'$, the optimal value of $L$ when $i^*$ is excluded from
$\mathcal{N}$, has been computed to a precision $\varepsilon$, then the set
$S^*$ allocated by the mechanism is such that:
\begin{equation} \label{approxbound}
OPT
\leq \frac{10e\!-\!3 + \sqrt{64e^2\!-\!24e\!+\!9}}{2(e\!-\!1)} V(S^*)\!
+ \! \varepsilon .
\end{equation}
To see this, let $L^*_{c_{-i^*}}$ be the  maximum value of $L$ subject to
$\lambda_{i^*}=0$, $\sum_{i\in \mathcal{N}\setminus{i^*}}c_i\leq B$. From line
\ref{relaxexec} of Algorithm~\ref{mechanism}, we have
$L^*_{c_{-i^*}}-\varepsilon\leq OPT_{-i^*}' \leq L^*_{c_{-i^*}}+\varepsilon$.

If the condition on line \ref{c} of the algorithm holds then, from the lower bound in Proposition~\ref{prop:relaxation},
\begin{displaymath}
    V(i^*) \geq \frac{1}{C}L^*_{c_{-i^*}}-\frac{\varepsilon}{C} \geq
    \frac{1}{C}OPT_{-i^*} -\frac{\varepsilon}{C}.
\end{displaymath}
Also, $OPT \leq OPT_{-i^*} + V(i^*)$,
hence,
\begin{equation}\label{eq:bound1}
    OPT\leq (1+C)V(i^*) + \varepsilon.
\end{equation}
If the condition on line \ref{c} does not hold, by observing that $L^*_{c_{-i^*}}\leq L^*_c$ and
the upper bound of Proposition~\ref{prop:relaxation}, we get
\begin{displaymath}
    V(i^*)\leq \frac{1}{C}L^*_{c_{-i^*}} + \frac{\varepsilon}{C}
    \leq \frac{1}{C} \big(2 OPT + 2 V(i^*)\big) + \frac{\varepsilon}{C}.
\end{displaymath}
Applying Lemma~\ref{lemma:greedy-bound},
\begin{displaymath}
    V(i^*) \leq \frac{1}{C}\left(\frac{2e}{e-1}\big(3 V(S_G)
    + 2 V(i^*)\big) + 2 V(i^*)\right) + \frac{\varepsilon}{C}.
\end{displaymath}
Note that $C$ satifies $C(e-1) -6e  +2 > 0$, hence
\begin{align*}
    V(i^*) \leq \frac{6e}{C(e-1)- 6e + 2} V(S_G) 
    + \frac{(e-1)\varepsilon}{C(e-1)- 6e + 2}.
\end{align*}
Finally, using Lemma~\ref{lemma:greedy-bound} again, we get
\begin{equation}\label{eq:bound2}
    OPT \leq 
    \frac{3e}{e-1}\left( 1 + \frac{4e}{C (e-1) -6e  +2}\right) V(S_G)
    + \frac{2e\varepsilon}{C(e-1)- 6e + 2}.
\end{equation}
Our choice of $C$, namely,
\begin{equation}\label{eq:constant}
    C =  \frac{8e-1 + \sqrt{64e^2-24e + 9}}{2(e-1)},
\end{equation}
 is precisely to minimize the maximum among the coefficients of $V_{i^*}$  and $V(S_G)$  in \eqref{eq:bound1}
and \eqref{eq:bound2}, respectively. Indeed, consider:
\begin{displaymath}
    \max\left(1+C,\frac{3e}{e-1}\left( 1 + \frac{4e}{C (e-1) -6e  +2}
            \right)\right).
\end{displaymath}
This function has two minima, only one of those is such that $C(e-1) -6e
+2 \geq 0$. This minimum is precisely \eqref{eq:constant}.
For this minimum, $\frac{2e\varepsilon}{C(e-1)- 6e + 2}\leq \varepsilon.$
Placing the expression of $C$ in \eqref{eq:bound1} and \eqref{eq:bound2}
gives the approximation ratio in \eqref{approxbound}, and concludes the proof
of Theorem~\ref{thm:main}.\hspace*{\stretch{1}}\qed

Finally, we prove the lower bound stated in Theorem~\ref{thm:main}.
Suppose, for contradiction, that such a mechanism exists. From Myerson's Theorem \cite{myerson}, a single parameter auction is truthful if and only if the allocation function is monotone and agents are paid theshold payments. Consider two
experiments with dimension $d=2$, such that $x_1 = e_1=[1 ,0]$, $x_2=e_2=[0,1]$
and $c_1=c_2=B/2+\epsilon$. Then, one of the two experiments, say, $x_1$, must
be in the set selected by the mechanism, otherwise the ratio is unbounded,
a contradiction. If $x_1$ lowers its value to $B/2-\epsilon$, by monotonicity
it remains in the solution; by  threshold payment, it is paid at least
$B/2+\epsilon$. So $x_2$ is not included in the solution by budget feasibility
and individual rationality: hence, the selected set attains a value $\log2$,
while the optimal value is $2\log 2$.\hspace*{\stretch{1}}\qed