1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
|
\EDP{} is NP-hard, but designing a mechanism for this problem will involve
being able to find an approximation $\tilde{L}^*(c)$ of $OPT$ with the
following three properties: first, it must be non-decreasing along
coordinate-axis, second it must have a constant approximation ratio to $OPT$
and finally, it must be computable in polynomial time.
This approximation will be obtained by introducing a concave optimization
problem with a constant approximation ratio to \EDP{}
(Proposition~\ref{prop:relaxation}). Using Newton's method, it is then
possible to solve this concave optimization problem to an arbitrary precision.
However, this approximation breaks the monotonicity of the approximation.
Finding a monotone approximate solution to the concave problem will be the
object of (Section~\ref{sec:monotonicity}).
\subsection{A concave relaxation of \EDP}\label{sec:concave}
A classical way of relaxing combinatorial optimization problems is
\emph{relaxing by expectation}, using the so-called \emph{multi-linear}
extension of the objective function $V$.
Let $P_\mathcal{N}^\lambda(S)$ be the probability of choosing the
set $S$ if we select each element $i$ in $\mathcal{N}$ independently with
probability $\lambda_i$:
\begin{displaymath}
P_\mathcal{N}^\lambda(S) \defeq \prod_{i\in S} \lambda_i
\prod_{i\in\mathcal{N}\setminus S}( 1 - \lambda_i).
\end{displaymath}
Then, the \emph{multi-linear} extension $F$ of $V$ is defined as the
expectation of $V$ under the probability distribution $P_\mathcal{N}^\lambda$:
\begin{equation}\label{eq:multi-linear}
F(\lambda)
\defeq \mathbb{E}_{S\sim P_\mathcal{N}^\lambda}\big[V(S)\big]
= \sum_{S\subseteq\mathcal{N}} P_\mathcal{N}^\lambda(S) V(S)
\end{equation}
This function is an extension of $V$ in the following sense: $F(\id_S) = V(S)$ for all
$S\subseteq\mathcal{N}$, where $\id_S$ denotes the indicator vector of $S$.
\citeN{pipage} have shown how to use this extension to obtain approximation
guarantees for an interesting class of optimization problems through the
\emph{pipage rounding} framework, which has been successfully applied
in \citeN{chen, singer-influence}.
However, for the specific function $V$ defined in \eqref{modified}, the
multi-linear extension cannot be computed (and \emph{a fortiori} maximized) in
polynomial time. Hence, we introduce a new function $L$:
\begin{equation}\label{eq:our-relaxation}
\forall\,\lambda\in[0,1]^n,\quad L(\lambda) \defeq
\log\det\left(I_d + \sum_{i\in\mathcal{N}} \lambda_i x_i\T{x_i}\right),
\end{equation}
Note that the relaxation $L$ that we introduced in \eqref{eq:our-relaxation},
follows naturally from the \emph{multi-linear} extension by swapping the
expectation and $V$ in \eqref{eq:multi-linear}:
\begin{displaymath}
L(\lambda) = \log\det\left(\mathbb{E}_{S\sim
P_\mathcal{N}^\lambda}\bigg[I_d + \sum_{i\in S} x_i\T{x_i} \bigg]\right).
\end{displaymath}
The optimization program \eqref{eq:non-strategic} extends naturally to such
a relaxation. We define:
\begin{equation}\tag{$P_c$}\label{eq:primal}
L^*_c \defeq \max_{\lambda\in[0, 1]^{n}}
\left\{L(\lambda) \Big| \sum_{i=1}^{n} \lambda_i c_i
\leq B\right\}
\end{equation}
The key property of the relaxation $L$, which is our main technical result, is
that it has constant approximation ratios to the multi-linear extension $F$.
\begin{lemma}\label{lemma:relaxation-ratio}
% The following inequality holds:
For all $\lambda\in[0,1]^{n},$
%\begin{displaymath}
$ \frac{1}{2}
\,L(\lambda)\leq
F(\lambda)\leq L(\lambda)$.
%\end{displaymath}
\end{lemma}
\begin{proof}
The bound $F_{\mathcal{N}}(\lambda)\leq L_{\mathcal{N}(\lambda)}$ follows by the concavity of the $\log\det$ function.
To show the lower bound,
we first prove that $\frac{1}{2}$ is a lower bound of the ratio $\partial_i
F(\lambda)/\partial_i L(\lambda)$, where
$\partial_i\, \cdot$ denotes the partial derivative with respect to the
$i$-th variable.
Let us start by computing the derivatives of $F$ and
$L$ with respect to the $i$-th component.
Observe that
\begin{displaymath}
\partial_i P_\mathcal{N}^\lambda(S) = \left\{
\begin{aligned}
& P_{\mathcal{N}\setminus\{i\}}^\lambda(S\setminus\{i\})\;\textrm{if}\;
i\in S, \\
& - P_{\mathcal{N}\setminus\{i\}}^\lambda(S)\;\textrm{if}\;
i\in \mathcal{N}\setminus S. \\
\end{aligned}\right.
\end{displaymath}
Hence,
\begin{displaymath}
\partial_i F(\lambda) =
\sum_{\substack{S\subseteq\mathcal{N}\\ i\in S}}
P_{\mathcal{N}\setminus\{i\}}^\lambda(S\setminus\{i\})V(S)
- \sum_{\substack{S\subseteq\mathcal{N}\\ i\in \mathcal{N}\setminus S}}
P_{\mathcal{N}\setminus\{i\}}^\lambda(S)V(S).
\end{displaymath}
Now, using that every $S$ such that $i\in S$ can be uniquely written as
$S'\cup\{i\}$, we can write:
\begin{displaymath}
\partial_i F(\lambda) =
\sum_{\substack{S\subseteq\mathcal{N}\\ i\in\mathcal{N}\setminus S}}
P_{\mathcal{N}\setminus\{i\}}^\lambda(S)\big(V(S\cup\{i\})
- V(S)\big).
\end{displaymath}
The marginal contribution of $i$ to
$S$ can be written as
\begin{align*}
V(S\cup \{i\}) - V(S)& = \frac{1}{2}\log\det(I_d
+ \T{X_S}X_S + x_i\T{x_i})
- \frac{1}{2}\log\det(I_d + \T{X_S}X_S)\\
& = \frac{1}{2}\log\det(I_d + x_i\T{x_i}(I_d +
\T{X_S}X_S)^{-1})
= \frac{1}{2}\log(1 + \T{x_i}A(S)^{-1}x_i)
\end{align*}
where $A(S) \defeq I_d+ \T{X_S}X_S$, and the last equality follows from the
Sylvester's determinant identity~\cite{sylvester}.
% $ V(S\cup\{i\}) - V(S) = \frac{1}{2}\log\left(1 + \T{x_i} A(S)^{-1}x_i\right)$.
Using this,
\begin{displaymath}
\partial_i F(\lambda) = \frac{1}{2}
\sum_{\substack{S\subseteq\mathcal{N}\\ i\in\mathcal{N}\setminus S}}
P_{\mathcal{N}\setminus\{i\}}^\lambda(S)
\log\Big(1 + \T{x_i}A(S)^{-1}x_i\Big)
\end{displaymath}
The computation of the derivative of $L$ uses standard matrix
calculus: writing $\tilde{A}(\lambda) = I_d+\sum_{i\in
\mathcal{N}}\lambda_ix_i\T{x_i}$,
\begin{displaymath}
\det \tilde{A}(\lambda + h\cdot e_i) = \det\big(\tilde{A}(\lambda)
+ hx_i\T{x_i}\big)
=\det \tilde{A}(\lambda)\big(1+
h\T{x_i}\tilde{A}(\lambda)^{-1}x_i\big).
\end{displaymath}
Hence,
\begin{displaymath}
\log\det\tilde{A}(\lambda + h\cdot e_i)= \log\det\tilde{A}(\lambda)
+ h\T{x_i}\tilde{A}(\lambda)^{-1}x_i + o(h),
\end{displaymath}
which implies
\begin{displaymath}
\partial_i L(\lambda)
=\frac{1}{2} \T{x_i}\tilde{A}(\lambda)^{-1}x_i.
\end{displaymath}
For two symmetric matrices $A$ and $B$, we write $A\succ B$ ($A\succeq B$) if
$A-B$ is positive definite (positive semi-definite). This order allows us to
define the notion of a \emph{decreasing} as well as \emph{convex} matrix
function, similarly to their real counterparts. With this definition, matrix
inversion is decreasing and convex over symmetric positive definite
matrices (see Example 3.48 p. 110 in \cite{boyd2004convex}).
In particular,
\begin{gather*}
\forall S\subseteq\mathcal{N},\quad A(S)^{-1} \succeq A(S\cup\{i\})^{-1}
\end{gather*}
as $A(S)\preceq A(S\cup\{i\})$. Observe that
% \begin{gather*}
% \forall
$P_{\mathcal{N}\setminus\{i\}}^\lambda(S)\geq P_{\mathcal{N}\setminus\{i\}}^\lambda(S\cup\{i\})$ for all $S\subseteq\mathcal{N}\setminus\{i\}$, and
% ,\\
$P_{\mathcal{N}\setminus\{i\}}^\lambda(S) \geq P_\mathcal{N}^\lambda(S),$ for all $S\subseteq\mathcal{N}$.
%\end{gather*}
Hence,
\begin{align*}
\partial_i F(\lambda)
% & = \sum_{\substack{S\subseteq\mathcal{N}\\ i\in\mathcal{N}\setminus S}} P_\mathcal{N}^\lambda(S) \log\Big(1 + \T{x_i}A(S)^{-1}x_i\Big)\\
& \geq \frac{1}{4}
\sum_{\substack{S\subseteq\mathcal{N}\\ i\in\mathcal{N}\setminus S}}
P_{\mathcal{N}\setminus\{i\}}^\lambda(S)
\log\Big(1 + \T{x_i}A(S)^{-1}x_i\Big)\\
&\hspace{-3.5em}+\frac{1}{4}
\sum_{\substack{S\subseteq\mathcal{N}\\ i\in\mathcal{N}\setminus S}}
P_{\mathcal{N}\setminus\{i\}}^\lambda(S\cup\{i\})
\log\Big(1 + \T{x_i}A(S\cup\{i\})^{-1}x_i\Big)\\
&\geq \frac{1}{4}
\sum_{S\subseteq\mathcal{N}}
P_\mathcal{N}^\lambda(S)
\log\Big(1 + \T{x_i}A(S)^{-1}x_i\Big).
\end{align*}
Using that $A(S)\succeq I_d$ we get that $\T{x_i}A(S)^{-1}x_i \leq
\norm{x_i}_2^2 \leq 1$. Moreover, $\log(1+x)\geq x$ for all $x\leq 1$.
Hence,
\begin{displaymath}
\partial_i F(\lambda) \geq
\frac{1}{4}
\T{x_i}\bigg(\sum_{S\subseteq\mathcal{N}}P_\mathcal{N}^\lambda(S)A(S)^{-1}\bigg)x_i.
\end{displaymath}
Finally, using that the inverse is a matrix convex function over symmetric
positive definite matrices:
\begin{displaymath}
\partial_i F(\lambda) \geq
\frac{1}{4}
\T{x_i}\bigg(\sum_{S\subseteq\mathcal{N}}P_\mathcal{N}^\lambda(S)A(S)\bigg)^{-1}x_i
= \frac{1}{4}\T{x_i}\tilde{A}(\lambda)^{-1}x_i
= \frac{1}{2}
\partial_i L(\lambda).
\end{displaymath}
Having bound the ratio between the partial derivatives, we now bound the ratio $F(\lambda)/L(\lambda)$ from below. Consider the following cases.
First, if the minimum of the ratio
$F(\lambda)/L(\lambda)$ is attained at a point interior to the hypercube, then it is
a critical point, \emph{i.e.}, $\partial_i \big(F(\lambda)/L(\lambda)\big)=0$ for all $i\in \mathcal{N}$; hence, at such a critical point:
\begin{equation}\label{eq:lhopital}
\frac{F(\lambda)}{L(\lambda)}
= \frac{\partial_i F(\lambda)}{\partial_i
L(\lambda)} \geq \frac{1}{2}.
\end{equation}
Second, if the minimum is attained as
$\lambda$ converges to zero in, \emph{e.g.}, the $l_2$ norm, by the Taylor approximation, one can write:
\begin{displaymath}
\frac{F(\lambda)}{L(\lambda)}
\sim_{\lambda\rightarrow 0}
\frac{\sum_{i\in \mathcal{N}}\lambda_i\partial_i F(0)}
{\sum_{i\in\mathcal{N}}\lambda_i\partial_i L(0)}
\geq \frac{1}{2},
\end{displaymath}
\emph{i.e.}, the ratio $\frac{F(\lambda)}{L(\lambda)}$ is necessarily bounded from below by 1/2 for small enough $\lambda$.
Finally, if the minimum is attained on a face of the hypercube $[0,1]^n$ (a face is
defined as a subset of the hypercube where one of the variable is fixed to
0 or 1), without loss of generality, we can assume that the minimum is
attained on the face where the $n$-th variable has been fixed
to 0 or 1. Then, either the minimum is attained at a point interior to the
face or on a boundary of the face. In the first sub-case, relation
\eqref{eq:lhopital} still characterizes the minimum for $i< n$.
In the second sub-case, by repeating the argument again by induction, we see
that all is left to do is to show that the bound holds for the vertices of
the cube (the faces of dimension 1). The vertices are exactly the binary
points, for which we know that both relaxations are equal to the value
function $V$. Hence, the ratio is equal to 1 on the vertices.
\end{proof}
We now prove that $F$ admits the following exchange property: let
$\lambda$ be a feasible element of $[0,1]^n$, it is possible to trade one
fractional component of $\lambda$ for another until one of them becomes
integral, obtaining a new element $\tilde{\lambda}$ which is both feasible and
for which $F(\tilde{\lambda})\geq F(\lambda)$. Here, by feasibility of a point
$\lambda$, we mean that it satisfies the budget constraint $\sum_{i=1}^n
\lambda_i c_i \leq B$. This rounding property is referred to in the literature
as \emph{cross-convexity} (see, \emph{e.g.}, \cite{dughmi}), or
$\varepsilon$-convexity by \citeN{pipage}.
\begin{lemma}[Rounding]\label{lemma:rounding}
For any feasible $\lambda\in[0,1]^{n}$, there exists a feasible
$\bar{\lambda}\in[0,1]^{n}$ such that at most one of its components is
fractional %, that is, lies in $(0,1)$ and:
and $F_{\mathcal{N}}(\lambda)\leq F_{\mathcal{N}}(\bar{\lambda})$.
\end{lemma}
\begin{proof}
We give a rounding procedure which, given a feasible $\lambda$ with at least
two fractional components, returns some feasible $\lambda'$ with one less fractional
component such that $F(\lambda) \leq F(\lambda')$.
Applying this procedure recursively yields the lemma's result.
Let us consider such a feasible $\lambda$. Let $i$ and $j$ be two
fractional components of $\lambda$ and let us define the following
function:
\begin{displaymath}
F_\lambda(\varepsilon) = F(\lambda_\varepsilon)
\quad\textrm{where} \quad
\lambda_\varepsilon = \lambda + \varepsilon\left(e_i-\frac{c_i}{c_j}e_j\right)
\end{displaymath}
It is easy to see that if $\lambda$ is feasible, then:
\begin{equation}\label{eq:convex-interval}
\forall\varepsilon\in\Big[\max\Big(-\lambda_i,(\lambda_j-1)\frac{c_j}{c_i}\Big), \min\Big(1-\lambda_i, \lambda_j
\frac{c_j}{c_i}\Big)\Big],\;
\lambda_\varepsilon\;\;\textrm{is feasible}
\end{equation}
Furthermore, the function $F_\lambda$ is convex; indeed:
\begin{align*}
F_\lambda(\varepsilon)
& = \mathbb{E}_{S'\sim P_{\mathcal{N}\setminus\{i,j\}}^\lambda(S')}\Big[
(\lambda_i+\varepsilon)\Big(\lambda_j-\varepsilon\frac{c_i}{c_j}\Big)V(S'\cup\{i,j\})\\
& + (\lambda_i+\varepsilon)\Big(1-\lambda_j+\varepsilon\frac{c_i}{c_j}\Big)V(S'\cup\{i\})
+ (1-\lambda_i-\varepsilon)\Big(\lambda_j-\varepsilon\frac{c_i}{c_j}\Big)V(S'\cup\{j\})\\
& + (1-\lambda_i-\varepsilon)\Big(1-\lambda_j+\varepsilon\frac{c_i}{c_j}\Big)V(S')\Big]
\end{align*}
Thus, $F_\lambda$ is a degree 2 polynomial whose dominant coefficient is:
\begin{displaymath}
\frac{c_i}{c_j}\mathbb{E}_{S'\sim
P_{\mathcal{N}\setminus\{i,j\}}^\lambda(S')}\Big[
V(S'\cup\{i\})+V(S'\cup\{i\})\\
-V(S'\cup\{i,j\})-V(S')\Big]
\end{displaymath}
which is positive by submodularity of $V$. Hence, the maximum of
$F_\lambda$ over the interval given in \eqref{eq:convex-interval} is
attained at one of its limit, at which either the $i$-th or $j$-th component of
$\lambda_\varepsilon$ becomes integral.
\end{proof}
Using Lemma~\ref{lemma:rounding}, we can relate the multi-linear extension to
$OPT$, and Lemma~\ref{lemma:relaxation-ratio} relates our relaxation $L$ to the
multi-linear extension. Putting these together gives us the following result:
\begin{proposition}\label{prop:relaxation}
$L^*_c \leq 2 OPT + 2\max_{i\in\mathcal{N}}V(i)$.
\end{proposition}
\begin{proof}
Let us consider a feasible point $\lambda^*\in[0,1]^{n}$ such that
$L(\lambda^*) = L^*_c$. By applying Lemma~\ref{lemma:relaxation-ratio} and
Lemma~\ref{lemma:rounding} we get a feasible point $\bar{\lambda}$ with at most
one fractional component such that
\begin{equation}\label{eq:e1}
L(\lambda^*) \leq 2 F(\bar{\lambda}).
\end{equation}
Let $\lambda_i$ denote the fractional component of $\bar{\lambda}$ and $S$
denote the set whose indicator vector is $\bar{\lambda} - \lambda_i e_i$.
By definition of the multi-linear extension $F$:
\begin{displaymath}
F(\bar{\lambda}) = (1-\lambda_i)V(S) +\lambda_i V(S\cup\{i\}).
\end{displaymath}
By submodularity of $V$, $V(S\cup\{i\})\leq V(S) + V(\{i\})$. Hence,
\begin{displaymath}
F(\bar{\lambda}) \leq V(S) + V(i).
\end{displaymath}
Note that since $\bar{\lambda}$ is feasible, $S$ is also feasible and
$V(S)\leq OPT$. Hence,
\begin{equation}\label{eq:e2}
F(\bar{\lambda}) \leq OPT + \max_{i\in\mathcal{N}} V(i).
\end{equation}
Together, \eqref{eq:e1} and \eqref{eq:e2} imply the lemma.
\end{proof}
\subsection{A monotonous estimator}\label{sec:monotonicity}
The $\log\det$ function is concave and self-concordant (see
\cite{boyd2004convex}), in this case, the analysis of the barrier method in
in \cite{boyd2004convex} (Section 11.5.5) can be summarized in the following
lemma:
\begin{lemma}\label{lemma:barrier}
For any $\varepsilon>0$, the barrier method computes an $\varepsilon$-accurate
approximation of $L^*_c$ in time $O(poly(n,d,\log\log\varepsilon^{-1})$.
\end{lemma}
Note however that even though $L^*_c$ is non-decreasing along coordinate axis
(if one of the cost decreases, then the feasible set of \eqref{eq:primal}
increases), this will not necessarily be the case for an $\varepsilon$-accurate
approximation of $L^*_c$ and Lemma~\ref{lemma:barrier} in itself is not
sufficient to provide an approximation satisfying the
properties requested at the beginning of Section~\ref{sec:approximation}.
The estimator we will construct in this section will have a slightly weaker
form of coordinate-wise monotonicity: \emph{$\delta$-monotonicity}.
\begin{definition}
Let $f$ be a function from $\reals^n$ to $\reals$, we say that $f$ is
\emph{$\delta$-increasing} iff:
\begin{displaymath}
\forall x\in\reals^n,\;
\forall \mu\geq\delta,\;
\forall i\in\{1,\ldots,n\},\;
f(x+\mu e_i)\geq f(x)
\end{displaymath}
where $e_i$ is the $i$-th basis vector of $\reals^n$. We define
\emph{$\delta$-decreasing} functions similarly.
\end{definition}
For the ease of presentation, we normalize the costs by dividing them by the
budget $B$ so that the budget constraint in \eqref{eq:primal} now reads
$\T{c}\lambda\leq 1$. We consider a perturbation of \eqref{eq:primal} by
introducing:
\begin{equation}\tag{$P_{c, \alpha}$}\label{eq:perturbed-primal}
L^*_c(\alpha) \defeq \max_{\lambda\in[\alpha, 1]^{n}}
\left\{L(\lambda) \Big| \sum_{i=1}^{n} \lambda_i c_i
\leq 1\right\}
\end{equation}
Note that we have $L^*_c = L^*_c(0)$. We will also assume that
$\alpha<\frac{1}{n}$ so that \eqref{eq:perturbed-primal} has at least one
feasible point: $(\frac{1}{n},\ldots,\frac{1}{n})$.
The $\delta$-decreasing approximation of $L^*_c$ is obtained by computing an
approximate solution of \eqref{eq:perturbed-primal}.
\begin{algorithm}[h]
\caption{}\label{alg:monotone}
\begin{algorithmic}[1]
\State $\alpha \gets \varepsilon(\delta+n^2)^{-1} $
\State Compute a $\frac{1}{2^{n+1}}\alpha\delta b$-accurate approximation of
$L^*_c(\alpha)$ using the barrier method
\end{algorithmic}
\end{algorithm}
\begin{proposition}\label{prop:monotonicity}
For any $\delta\in(0,1]$ and any $\varepsilon\in(0,1]$,
Algorithm~\ref{alg:monotone} computes a $\delta$-decreasing,
$\varepsilon$-accurate approximation of $L^*_c$. The running time of the
algorithm is $O\big(poly(n, d, \log\log\frac{1}{b\varepsilon\delta})\big)$
\end{proposition}
We show that the optimal value of \eqref{eq:perturbed-primal} is close to the
optimal value of \eqref{eq:primal} (Lemma~\ref{lemma:proximity}) while being
well-behaved with respect to changes of the cost
(Lemma~\ref{lemma:monotonicity}). These lemmas together imply
Proposition~\ref{prop:monotonicity}.
\begin{lemma}\label{lemma:derivative-bounds}
Let $\partial_i L(\lambda)$ denote the $i$-th derivative of $L$, for $i\in\{1,\ldots, n\}$, then:
\begin{displaymath}
\forall\lambda\in[0, 1]^n,\;\frac{b}{2^n} \leq \partial_i L(\lambda) \leq 1
\end{displaymath}
\end{lemma}
\begin{proof}
Let us define:
\begin{displaymath}
S(\lambda)\defeq I_d + \sum_{i=1}^n \lambda_i x_i\T{x_i}
\quad\mathrm{and}\quad
S_k \defeq I_d + \sum_{i=1}^k x_i\T{x_i}
\end{displaymath}
We have $\partial_i L(\lambda) = \T{x_i}S(\lambda)^{-1}x_i$. Since
$S(\lambda)\geq I_d$, $\partial_i L(\lambda)\leq \T{x_i}x_i \leq 1$, which
is the right-hand side of the lemma.
For the left-hand side, note that $S(\lambda) \leq S_n$. Hence
$\partial_iL(\lambda)\geq \T{x_i}S_n^{-1}x_i$.
Using the Sherman-Morrison formula, for all $k\geq 1$:
\begin{displaymath}
\T{x_i}S_k^{-1} x_i = \T{x_i}S_{k-1}^{-1}x_i
- \frac{(\T{x_i}S_{k-1}^{-1}x_k)^2}{1+\T{x_k}S_{k-1}^{-1}x_k}
\end{displaymath}
By the Cauchy-Schwarz inequality:
\begin{displaymath}
(\T{x_i}S_{k-1}^{-1}x_k)^2 \leq \T{x_i}S_{k-1}^{-1}x_i\;\T{x_k}S_{k-1}^{-1}x_k
\end{displaymath}
Hence:
\begin{displaymath}
\T{x_i}S_k^{-1} x_i \geq \T{x_i}S_{k-1}^{-1}x_i
- \T{x_i}S_{k-1}^{-1}x_i\frac{\T{x_k}S_{k-1}^{-1}x_k}{1+\T{x_k}S_{k-1}^{-1}x_k}
\end{displaymath}
But $\T{x_k}S_{k-1}^{-1}x_k\leq 1$ and $\frac{a}{1+a}\leq \frac{1}{2}$ if
$0\leq a\leq 1$, so:
\begin{displaymath}
\T{x_i}S_{k}^{-1}x_i \geq \T{x_i}S_{k-1}^{-1}x_i
- \frac{1}{2}\T{x_i}S_{k-1}^{-1}x_i\geq \frac{\T{x_i}S_{k-1}^{-1}x_i}{2}
\end{displaymath}
By induction:
\begin{displaymath}
\T{x_i}S_n^{-1} x_i \geq \frac{\T{x_i}x_i}{2^n}
\end{displaymath}
Using that $\T{x_i}{x_i}\geq b$ concludes the proof of the left-hand side
of the lemma's inequality.
\end{proof}
Let us introduce the lagrangian of problem, \eqref{eq:perturbed-primal}:
\begin{displaymath}
\mathcal{L}_{c, \alpha}(\lambda, \mu, \nu, \xi) \defeq L(\lambda)
+ \T{\mu}(\lambda-\alpha\mathbf{1}) + \T{\nu}(\mathbf{1}-\lambda) + \xi(1-\T{c}\lambda)
\end{displaymath}
so that:
\begin{displaymath}
L^*_c(\alpha) = \min_{\mu, \nu, \xi\geq 0}\max_\lambda \mathcal{L}_{c, \alpha}(\lambda, \mu, \nu, \xi)
\end{displaymath}
Similarly, we define $\mathcal{L}_{c}\defeq\mathcal{L}_{c, 0}$ the lagrangian of \eqref{eq:primal}.
Let $\lambda^*$ be primal optimal for \eqref{eq:perturbed-primal}, and $(\mu^*,
\nu^*, \xi^*)$ be dual optimal for the same problem. In addition to primal and
dual feasibility, the KKT conditions give $\forall i\in\{1, \ldots, n\}$:
\begin{gather*}
\partial_i L(\lambda^*) + \mu_i^* - \nu_i^* - \xi^* c_i = 0\\
\mu_i^*(\lambda_i^* - \alpha) = 0\\
\nu_i^*(1 - \lambda_i^*) = 0
\end{gather*}
\begin{lemma}\label{lemma:proximity}
We have:
\begin{displaymath}
L^*_c - \alpha n^2\leq L^*_c(\alpha) \leq L^*_c
\end{displaymath}
In particular, $|L^*_c - L^*_c(\alpha)| \leq \alpha n^2$.
\end{lemma}
\begin{proof}
$\alpha\mapsto L^*_c(\alpha)$ is a decreasing function as it is the
maximum value of the $L$ function over a set-decreasing domain, which gives
the rightmost inequality.
Let $\mu^*, \nu^*, \xi^*$ be dual optimal for $(P_{c, \alpha})$, that is:
\begin{displaymath}
L^*_{c}(\alpha) = \max_\lambda \mathcal{L}_{c, \alpha}(\lambda, \mu^*, \nu^*, \xi^*)
\end{displaymath}
Note that $\mathcal{L}_{c, \alpha}(\lambda, \mu^*, \nu^*, \xi^*)
= \mathcal{L}_{c}(\lambda, \mu^*, \nu^*, \xi^*)
- \alpha\T{\mathbf{1}}\mu^*$, and that for any $\lambda$ feasible for
problem \eqref{eq:primal}, $\mathcal{L}_{c}(\lambda, \mu^*, \nu^*, \xi^*)
\geq L(\lambda)$. Hence,
\begin{displaymath}
L^*_{c}(\alpha) \geq L(\lambda) - \alpha\T{\mathbf{1}}\mu^*
\end{displaymath}
for any $\lambda$ feasible for \eqref{eq:primal}. In particular, for $\lambda$ primal optimal for $\eqref{eq:primal}$:
\begin{equation}\label{eq:local-1}
L^*_{c}(\alpha) \geq L^*_c - \alpha\T{\mathbf{1}}\mu^*
\end{equation}
Let us denote by the $M$ the support of $\mu^*$, that is $M\defeq
\{i|\mu_i^* > 0\}$, and by $\lambda^*$ a primal optimal point for
$\eqref{eq:perturbed-primal}$. From the KKT conditions we see that:
\begin{displaymath}
M \subseteq \{i|\lambda_i^* = \alpha\}
\end{displaymath}
Let us first assume that $|M| = 0$, then $\T{\mathbf{1}}\mu^*=0$ and the lemma follows.
We will now assume that $|M|\geq 1$. In this case $\T{c}\lambda^*
= 1$, otherwise we could increase the coordinates of $\lambda^*$ in $M$,
which would increase the value of the objective function and contradict the
optimality of $\lambda^*$. Note also, that $|M|\leq n-1$, otherwise, since
$\alpha< \frac{1}{n}$, we would have $\T{c}\lambda^*\ < 1$, which again
contradicts the optimality of $\lambda^*$. Let us write:
\begin{displaymath}
1 = \T{c}\lambda^* = \alpha\sum_{i\in M}c_i + \sum_{i\in \bar{M}}\lambda_i^*c_i
\leq \alpha |M| + (n-|M|)\max_{i\in \bar{M}} c_i
\end{displaymath}
That is:
\begin{equation}\label{local-2}
\max_{i\in\bar{M}} c_i \geq \frac{1 - |M|\alpha}{n-|M|}> \frac{1}{n}
\end{equation}
where the last inequality uses again that $\alpha<\frac{1}{n}$. From the
KKT conditions, we see that for $i\in M$, $\nu_i^* = 0$ and:
\begin{equation}\label{local-3}
\mu_i^* = \xi^*c_i - \partial_i L(\lambda^*)\leq \xi^*c_i\leq \xi^*
\end{equation}
since $\partial_i L(\lambda^*)\geq 0$ and $c_i\leq 1$.
Furthermore, using the KKT conditions again, we have that:
\begin{equation}\label{local-4}
\xi^* \leq \inf_{i\in \bar{M}}\frac{\partial_i L(\lambda^*)}{c_i}\leq \inf_{i\in \bar{M}} \frac{1}{c_i}
= \frac{1}{\max_{i\in\bar{M}} c_i}
\end{equation}
where the last inequality uses Lemma~\ref{lemma:derivative-bounds}.
Combining \eqref{local-2}, \eqref{local-3} and \eqref{local-4}, we get that:
\begin{displaymath}
\sum_{i\in M}\mu_i^* \leq |M|\xi^* \leq n\xi^*\leq \frac{n}{\max_{i\in\bar{M}} c_i} \leq n^2
\end{displaymath}
This implies that:
\begin{displaymath}
\T{\mathbf{1}}\mu^* = \sum_{i=1}^n \mu^*_i = \sum_{i\in M}\mu_i^*\leq n^2
\end{displaymath}
which in addition to \eqref{eq:local-1} proves the lemma.
\end{proof}
\begin{lemma}\label{lemma:monotonicity}
If $c'$ = $(c_i', c_{-i})$, with $c_i'\leq c_i - \delta$, we have:
\begin{displaymath}
L^*_{c'}(\alpha) \geq L^*_c(\alpha) + \frac{\alpha\delta b}{2^n}
\end{displaymath}
\end{lemma}
\begin{proof}
Let $\mu^*, \nu^*, \xi^*$ be dual optimal for $(P_{c', \alpha})$. Noting that:
\begin{displaymath}
\mathcal{L}_{c', \alpha}(\lambda, \mu^*, \nu^*, \xi^*) \geq
\mathcal{L}_{c, \alpha}(\lambda, \mu^*, \nu^*, \xi^*) + \lambda_i\xi^*\delta,
\end{displaymath}
we get similarly to Lemma~\ref{lemma:proximity}:
\begin{displaymath}
L^*_{c'}(\alpha) \geq L(\lambda) + \lambda_i\xi^*\delta
\end{displaymath}
for any $\lambda$ feasible for \eqref{eq:perturbed-primal}. In particular, for $\lambda^*$ primal optimal for \eqref{eq:perturbed-primal}:
\begin{displaymath}
L^*_{c'}(\alpha) \geq L^*_{c}(\alpha) + \alpha\xi^*\delta
\end{displaymath}
since $\lambda_i^*\geq \alpha$.
Using the KKT conditions for $(P_{c', \alpha})$, we can write:
\begin{displaymath}
\xi^* = \inf_{i:\lambda^{'*}_i>\alpha} \frac{\T{x_i}S(\lambda^{'*})^{-1}x_i}{c_i'}
\end{displaymath}
with $\lambda^{'*}$ optimal for $(P_{c', \alpha})$. Since $c_i'\leq 1$, using Lemma~\ref{lemma:derivative-bounds}, we get that $\xi^*\geq \frac{b}{2^n}$, which concludes the proof.
\end{proof}
\subsubsection*{End of the proof of Proposition~\ref{prop:monotonicity}}
Let $\tilde{L}^*_c$ be the approximation computed by
Algorithm~\ref{alg:monotone}.
\begin{enumerate}
\item using Lemma~\ref{lemma:proximity}:
\begin{displaymath}
|\tilde{L}^*_c - L^*_c| \leq |\tilde{L}^*_c - L^*_c(\alpha)| + |L^*_c(\alpha) - L^*_c|
\leq \alpha\delta + \alpha n^2 = \varepsilon
\end{displaymath}
which proves the $\varepsilon$-accuracy.
\item for the $\delta$-decreasingness, let $c' = (c_i', c_{-i})$ with $c_i'\leq
c_i-\delta$, then:
\begin{displaymath}
\tilde{L}^*_{c'} \geq L^*_{c'} - \frac{\alpha\delta b}{2^{n+1}}
\geq L^*_c + \frac{\alpha\delta b}{2^{n+1}}
\geq \tilde{L}^*_c
\end{displaymath}
where the first and inequality come from the accuracy of the approximation, and
the inner inequality follows from Lemma~\ref{lemma:monotonicity}.
\item the accuracy of the approximation $\tilde{L}^*_c$ is:
\begin{displaymath}
A\defeq\frac{\varepsilon\delta b}{2^{n+1}(\delta + n^2)}
\end{displaymath}
Note that:
\begin{displaymath}
\log\log A^{-1} = O\bigg(\log\log\frac{1}{\varepsilon\delta b} + \log n\bigg)
\end{displaymath}
Using Lemma~\ref{lemma:barrier} concludes the proof of the running time.\qed
\end{enumerate}
|