1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
|
All the budget feasible mechanisms studied recently (TODO ref Singer Chen)
rely on using a greedy heuristic extending the idea of the greedy heuristic for
the knapsack problem. In knapsack, objects are selected based on their
\emph{value-per-cost} ratio. The quantity which plays a similar role for
general submodular functions is the \emph{marginal-contribution-per-cost}
ratio: let us assume that you have already selected a set of points $S$, then
the \emph{marginal-contribution-per-cost} ratio per cost of a new point $i$ is
defined by:
\begin{displaymath}
\frac{V(S\cup\{i\}) - V(S)}{c_i}
\end{displaymath}
The greedy heuristic then simply repeatedly selects the point whose
marginal-contribution-per-cost ratio is the highest until it reaches the budget
limit. Mechanism considerations aside, this is known to have an unbounded
approximation ratio. However, lemma TODO ref in Chen or Singer shows that the
maximum between the greedy heuristic and the point with maximum value (as
a singleton set) provides a $\frac{5e}{e-1}$ approximation ratio.
Unfortunately, TODO Singer 2011 points out that taking the maximum between the
greedy heuristic and the most valuable point is not incentive compatible.
Singer and Chen tackle this issue similarly: instead of comparing the most
valuable point to the greedy solution, they compare it to a solution which is
close enough to keep a constant approximation ratio:
\begin{itemize}
\item Chen suggests using $OPT(V,\mathcal{N}\setminus\{i\}, B)$.
Unfortunately, in the general case, this cannot be computed exactly in
polynomial time.
\item Singer uses using the optimal value of a relaxed objective function
which can be proven to be close to the optimal of the original
objective function. The function used is tailored to the specific
problem of coverage.
\end{itemize}
Here, we use a relaxation of the objective function which is tailored to the
problem of ridge regression. We define:
\begin{displaymath}
\forall\lambda\in[0,1]^{|\mathcal{N}|}\,\quad L_{\mathcal{N}}(\lambda) \defeq
\log\det\left(I_d + \mu\sum_{i\in\mathcal{N}} \lambda_i x_i x_i^*\right)
\end{displaymath}
We can now present the mechanism we use, which has a same flavor to Chen's and
Singer's
\begin{algorithm}\label{mechanism}
\caption{Mechanism for ridge regression}
\begin{algorithmic}[1]
\State $i^* \gets \argmax_{j\in\mathcal{N}}V(j)$
\State $x^* \gets \argmax_{x\in[0,1]^n} \{L_{\mathcal{N}\setminus\{i^*\}}(x)
\,|\, c(x)\leq B\}$
\Statex
\If{$L(x^*) < CV(i^*)$}
\State \textbf{return} $\{i^*\}$
\Else
\State $i \gets \argmax_{1\leq j\leq n}\frac{V(j)}{c_j}$
\State $S \gets \emptyset$
\While{$c_i\leq \frac{B}{2}\frac{V(S\cup\{i\})-V(S)}{V(S\cup\{i\})}$}
\State $S \gets S\cup\{i\}$
\State $i \gets \argmax_{j\in\mathcal{N}\setminus S}
\frac{V(S\cup\{j\})-V(S)}{c_j}$
\EndWhile
\State \textbf{return} $S$
\EndIf
\end{algorithmic}
\end{algorithm}
Notice, that the stopping condition in the while loop is more sophisticated
than just ensuring that the sum of the costs does not exceed the budget. This
is because the selected users will be payed more than their costs, and this
stopping condition ensures budget feasibility when the users are paid their
threshold payment.
We can now state the main result of this section:
\begin{theorem}
The mechanism in \ref{mechanism} is truthful, individually rational, budget
feasible. Furthermore, choosing:
\begin{multline*}
C = C^* = \frac{5e-1 + C_\mu(2e+1)}{2C_\mu(e-1)}\\
+ \frac{\sqrt{C_\mu^2(1+2e)^2
+ 2C_\mu(14e^2+5e+1) + (1-5e)^2}}{2C_\mu(e-1)}
\end{multline*}
we get an approximation ratio of:
\begin{multline*}
1 + C^* = \frac{5e-1 + C_\mu(4e-1)}{2C_\mu(e-1)}\\
+ \frac{\sqrt{C_\mu^2(1+2e)^2
+ 2C_\mu(14e^2+5e+1) + (1-5e)^2}}{2C_\mu(e-1)}
\end{multline*}
where:
\begin{displaymath}
C_\mu = \frac{\log(1+\mu)}{2\mu}
\end{displaymath}
\end{theorem}
The proof will consist of the claims of the theorem broken down into lemmas.
Because the user strategy is parametrized by a single parameter, truthfulness
is equivalent to monotonicity (TODO ref). The proof here is the same as in TODO
and is given for the sake of completeness.
\begin{lemma}
The mechanism is monotone.
\end{lemma}
\begin{proof}
We assume by contradiction that there exists a user $i$ that has been
selected by the mechanism and that would not be selected had he reported
a cost $c_i'\leq c_i$ (all the other costs staying the same).
If $i\neq i^*$ and $i$ has been selected, then we are in the case where
$L(x^*) \geq C V(i^*)$ and $i$ was included in the result set by the greedy
part of the mechanism. By reporting a cost $c_i'\leq c_i$, using the
submodularity of $V$, we see that $i$ will satisfy the greedy selection
rule:
\begin{displaymath}
i = \argmax_{j\in\mathcal{N}\setminus S} \frac{V(S\cup\{j\})
- V(S)}{c_j}
\end{displaymath}
in an earlier iteration of the greedy heuristic. Let us denote by $S_i$
(resp. $S_i'$) the set to which $i$ is added when reporting cost $c_i$
(resp. $c_i'$). We have $S_i'\subset S_i$. Moreover:
\begin{align*}
c_i' & \leq c_i \leq
\frac{B}{2}\frac{V(S_i\cup\{i\})-V(S_i)}{V(S_i\cup\{i\})}\\
& \leq \frac{B}{2}\frac{V(S_i'\cup\{i\})-V(S_i')}{V(S_i'\cup\{i\})}
\end{align*}
Hence $i$ will still be included in the result set.
If $i = i^*$, $i$ is included iff $L(x^*) \leq C V(i^*)$. Reporting $c_i'$
instead of $c_i$ does not change the value $V(i^*)$ nor $L(x^*)$ (which is
computed over $\mathcal{N}\setminus\{i^*\}$). Thus $i$ is still included by
reporting a different cost.
\end{proof}
\begin{lemma}
The mechanism is budget feasible.
\end{lemma}
The proof is the same as in Chen and is given here for the sake of
completeness.
\begin{proof}
\end{proof}
Using the characterization of the threshold payments from Singer TODO, we can
prove individual rationality similarly to Chen TODO.
\begin{lemma}
The mechanism is individually rational
\end{lemma}
\begin{proof}
\end{proof}
The following lemma requires to have a careful look at the relaxation function
we chose in the mechanism. The next section will be dedicated to studying this
relaxation and will contain the proof of the following lemma:
\begin{lemma}
We have:
\begin{displaymath}
OPT(L_\mathcal{N}, B) \leq \frac{1}{C_\mu}\big(2 OPT(V,\mathcal{N},B)
+ \max_{i\in\mathcal{N}}V(i)\big)
\end{displaymath}
\end{lemma}
\begin{lemma}
Let us denote by $S_M$ the set returned by the mechanism. Let us also
write:
\begin{displaymath}
C_{\textrm{max}} = \max\left(1+C,\frac{e}{e-1}\left( 3 + \frac{12e}{C\cdot
C_\mu(e-1) -5e +1}\right)\right)
\end{displaymath}
Then:
\begin{displaymath}
OPT(V, \mathcal{N}, B) \leq
C_\text{max}\cdot V(S_M)
\end{displaymath}
\end{lemma}
\begin{proof}
If the condition on line 3 of the algorithm holds, then:
\begin{displaymath}
V(i^*) \geq \frac{1}{C}L(x^*) \geq
\frac{1}{C}OPT(V,\mathcal{N}\setminus\{i\}, B)
\end{displaymath}
But:
\begin{displaymath}
OPT(V,\mathcal{N},B) \leq OPT(V,\mathcal{N}\setminus\{i\}, B) + V(i^*)
\end{displaymath}
Hence:
\begin{displaymath}
V(i^*) \geq \frac{1}{C+1} OPT(V,\mathcal{N}, B)
\end{displaymath}
If the condition of the algorithm does not hold:
\begin{align*}
V(i^*) & \leq \frac{1}{C}L(x^*) \leq \frac{1}{C\cdot C_\mu}
\big(2 OPT(V,\mathcal{N}, B) + V(i^*)\big)\\
& \leq \frac{1}{C\cdot C_\mu}\left(\frac{2e}{e-1}\big(3 V(S_M)
+ 2 V(i^*)\big)
+ V(i^*)\right)
\end{align*}
Thus:
\begin{align*}
V(i^*) \leq \frac{6e}{C\cdot C_\mu(e-1)- 5e + 1} V(S_M)
\end{align*}
Finally, using again that:
\begin{displaymath}
OPT(V,\mathcal{N},B) \leq \frac{e}{e-1}\big(3 V(S_M) + 2 V(i^*)\big)
\end{displaymath}
We get:
\begin{displaymath}
OPT(V, \mathcal{N}, B) \leq \frac{e}{e-1}\left( 3 + \frac{12e}{C\cdot
C_\mu(e-1) -5e +1}\right) V(S_M)
\end{displaymath}
\end{proof}
The optimal value for $C$ is:
\begin{displaymath}
C^* = \arg\min C_{\textrm{max}}
\end{displaymath}
This equation has two solutions. Only one of those is such that:
\begin{displaymath}
C\cdot C_\mu(e-1) -5e +1 \geq 0
\end{displaymath}
which is needed in the proof of the previous lemma. Computing this solution,
we can state the main result of this section.
\subsection{Relaxations of the value function}
To prove lemma TODO, we will use a general method called pipage rounding,
introduced in TODO. Two consecutive relaxations are used: the one that we are
interested in, whose optimization can be computed efficiently, and the
multilinear extension which presents a \emph{cross-convexity} like behavior
which allows for rounding of fractional solution without decreasing the value
of the objective function and thus ensures a constant approximation of the
value function. The difficulty resides in showing that the ratio of the two
relaxations is bounded.
We say that $R_\mathcal{N}:[0,1]^n\rightarrow\mathbf{R}$ is a relaxation of the
value function $V$ over $\mathcal{N}$ if it coincides with $V$ at binary
points. Formally, for any $S\subset\mathcal{N}$, let $\mathbf{1}_S$ denote the
indicator vector of $S$. $R_\mathcal{N}$ is a relaxation of $V$ over
$\mathcal{N}$ iff:
\begin{displaymath}
\forall S\subset\mathcal{N},\; R_\mathcal{N}(\mathbf{1}_S) = V(S)
\end{displaymath}
We can extend the optimisation problem defined above to a relaxation by
extending the cost function:
\begin{displaymath}
\forall \lambda\in[0,1]^n,\; c(\lambda)
= \sum_{i\in\mathcal{N}}\lambda_ic_i
\end{displaymath}
The optimisation problem becomes:
\begin{displaymath}
OPT(R_\mathcal{N}, B) =
\max_{\lambda\in[0,1]^n}\left\{R_\mathcal{N}(\lambda)\,|\, c(\lambda)\leq B\right\}
\end{displaymath}
The relaxations we will consider here rely on defining a probability
distribution over subsets of $\mathcal{N}$.
Let $\lambda\in[0,1]^n$, let us define:
\begin{displaymath}
P_\mathcal{N}^\lambda(S) = \prod_{i\in S}\lambda_i
\prod_{i\in\mathcal{N}\setminus S}(1-\lambda_i)
\end{displaymath}
$P_\mathcal{N}^\lambda(S)$ is the probability of picking the set $S$ if we select
a subset of $\mathcal{N}$ at random by deciding independently for each point to
include it in the set with probability $\lambda_i$ (and to exclude it with
probability $1-\lambda_i$).
We will consider two relaxations of the value function $V$ over $\mathcal{N}$:
\begin{itemize}
\item the \emph{multi-linear extension} of $V$:
\begin{align*}
F_\mathcal{N}(\lambda)
& = \mathbb{E}_{S\sim P_\mathcal{N}^\lambda}\big[\log\det A(S)\big]\\
& = \sum_{S\subset\mathcal{N}} P_\mathcal{N}^\lambda(S) V(S)\\
& = \sum_{S\subset\mathcal{N}} P_\mathcal{N}^\lambda(S) \log\det A(S)\\
\end{align*}
\item the \emph{concave relaxation} of $V$:
\begin{align*}
L_{\mathcal{N}}(\lambda)
& = \log\det \mathbb{E}_{S\sim P_\mathcal{N}^\lambda}\big[A(S)\big]\\
& = \log\det\left(\sum_{S\subset N}
P_\mathcal{N}^\lambda(S)A(S)\right)\\
& = \log\det\left(I_d + \mu\sum_{i\in\mathcal{N}}
\lambda_ix_ix_i^*\right)\\
& \defeq \log\det \tilde{A}(\lambda)
\end{align*}
\end{itemize}
\begin{lemma}
The \emph{concave relaxation} $L_\mathcal{N}$ is concave\footnote{Hence
this relaxation is well-named!}.
\end{lemma}
\begin{proof}
This follows from the concavity of the $\log\det$ function over symmetric
positive semi-definite matrices. More precisely, if $A$ and $B$ are two
symmetric positive semi-definite matrices, then:
\begin{multline*}
\forall\alpha\in [0, 1],\; \log\det\big(\alpha A + (1-\alpha) B\big)\\
\geq \alpha\log\det A + (1-\alpha)\log\det B
\end{multline*}
\end{proof}
\begin{lemma}[Rounding]\label{lemma:rounding}
For any feasible $\lambda\in[0,1]^n$, there exists a feasible
$\bar{\lambda}\in[0,1]^n$ such that at most one of its component is
fractional, that is, lies in $(0,1)$ and:
\begin{displaymath}
F_{\mathcal{N}}(\lambda)\leq F_{\mathcal{N}}(\bar{\lambda})
\end{displaymath}
\end{lemma}
\begin{proof}
We give a rounding procedure which given a feasible $\lambda$ with at least
two fractional components, returns some $\lambda'$ with one less fractional
component, feasible such that:
\begin{displaymath}
F_\mathcal{N}(\lambda) \leq F_\mathcal{N}(\lambda')
\end{displaymath}
Applying this procedure recursively yields the lemma's result.
Let us consider such a feasible $\lambda$. Let $i$ and $j$ be two
fractional components of $\lambda$ and let us define the following
function:
\begin{displaymath}
F_\lambda(\varepsilon) = F(\lambda_\varepsilon)
\quad\textrm{where} \quad
\lambda_\varepsilon = \lambda + \varepsilon\left(e_i-\frac{c_i}{c_j}e_j\right)
\end{displaymath}
It is easy to see that if $\lambda$ is feasible, then:
\begin{multline}\label{eq:convex-interval}
\forall\varepsilon\in\Big[\max\Big(-\lambda_i,(\lambda_j-1)\frac{c_j}{c_i}\Big), \min\Big(1-\lambda_i, \lambda_j
\frac{c_j}{c_i}\Big)\Big],\;\\
\lambda_\varepsilon\;\;\textrm{is feasible}
\end{multline}
Furthermore, the function $F_\lambda$ is convex, indeed:
\begin{align*}
F_\lambda(\varepsilon)
& = \mathbb{E}_{S'\sim P_{\mathcal{N}\setminus\{i,j\}}^\lambda(S')}\Big[
(\lambda_i+\varepsilon)\Big(\lambda_j-\varepsilon\frac{c_i}{c_j}\Big)V(S'\cup\{i,j\})\\
& + (\lambda_i+\varepsilon)\Big(1-\lambda_j+\varepsilon\frac{c_i}{c_j}\Big)V(S'\cup\{i\})\\
& + (1-\lambda_i-\varepsilon)\Big(\lambda_j-\varepsilon\frac{c_i}{c_j}\Big)V(S'\cup\{j\})\\
& + (1-\lambda_i-\varepsilon)\Big(1-\lambda_j+\varepsilon\frac{c_i}{c_j}\Big)V(S')\Big]\\
\end{align*}
Thus, $F_\lambda$ is a degree 2 polynomial whose dominant coefficient is:
\begin{multline*}
\frac{c_i}{c_j}\mathbb{E}_{S'\sim
P_{\mathcal{N}\setminus\{i,j\}}^\lambda(S')}\Big[
V(S'\cup\{i\})+V(S'\cup\{i\})\\
-V(S'\cup\{i,j\})-V(S')\Big]
\end{multline*}
which is positive by submodularity of $V$. Hence, the maximum of
$F_\lambda$ over the interval given in \eqref{eq:convex-interval} is
attained at one of its limit, at which either the $i$-th or $j$-th component of
$\lambda_\varepsilon$ becomes integral.
\end{proof}
\begin{lemma}\label{lemma:relaxation-ratio}
The following inequality holds:
\begin{displaymath}
\forall\lambda\in[0,1]^n,\;
\frac{\log\big(1+\mu\big)}{2\mu}
\,L_\mathcal{N}(\lambda)\leq
F_\mathcal{N}(\lambda)\leq L_{\mathcal{N}}(\lambda)
\end{displaymath}
\end{lemma}
\begin{proof}
We will prove that:
\begin{displaymath}
\frac{\log\big(1+\mu\big)}{2\mu}
\end{displaymath}
is a lower bound of the ratio $\partial_i F_\mathcal{N}(\lambda)/\partial_i
L_\mathcal{N}(\lambda)$.
This will be enough to conclude, by observing that:
\begin{displaymath}
\frac{F_\mathcal{N}(\lambda)}{L_\mathcal{N}(\lambda)}
\sim_{\lambda\rightarrow 0}
\frac{\sum_{i\in \mathcal{N}}\lambda_i\partial_i F_\mathcal{N}(0)}
{\sum_{i\in\mathcal{N}}\lambda_i\partial_i L_\mathcal{N}(0)}
\end{displaymath}
and that an interior critical point of the ratio
$F_\mathcal{N}(\lambda)/L_\mathcal{N}(\lambda)$ is defined by:
\begin{displaymath}
\frac{F_\mathcal{N}(\lambda)}{L_\mathcal{N}(\lambda)}
= \frac{\partial_i F_\mathcal{N}(\lambda)}{\partial_i
L_\mathcal{N}(\lambda)}
\end{displaymath}
Let us start by computing the derivatives of $F_\mathcal{N}$ and
$L_\mathcal{N}$ with respect to
the $i$-th component.
For $F$, it suffices to look at the derivative of
$P_\mathcal{N}^\lambda(S)$:
\begin{displaymath}
\partial_i P_\mathcal{N}^\lambda(S) = \left\{
\begin{aligned}
& P_{\mathcal{N}\setminus\{i\}}^\lambda(S\setminus\{i\})\;\textrm{if}\; i\in S \\
& - P_{\mathcal{N}\setminus\{i\}}^\lambda(S)\;\textrm{if}\;
i\in \mathcal{N}\setminus S \\
\end{aligned}\right.
\end{displaymath}
Hence:
\begin{multline*}
\partial_i F_\mathcal{N} =
\sum_{\substack{S\subset\mathcal{N}\\ i\in S}}
P_{\mathcal{N}\setminus\{i\}}^\lambda(S\setminus\{i\})V(S)\\
- \sum_{\substack{S\subset\mathcal{N}\\ i\in \mathcal{N}\setminus S}}
P_{\mathcal{N}\setminus\{i\}}^\lambda(S)V(S)\\
\end{multline*}
Now, using that every $S$ such that $i\in S$ can be uniquely written as
$S'\cup\{i\}$, we can write:
\begin{multline*}
\partial_i F_\mathcal{N} =
\sum_{\substack{S\subset\mathcal{N}\\ i\in\mathcal{N}\setminus S}}
P_{\mathcal{N}\setminus\{i\}}^\lambda(S)V(S\cup\{i\})\\
- \sum_{\substack{S\subset\mathcal{N}\\ i\in \mathcal{N}\setminus S}}
P_{\mathcal{N}\setminus\{i\}}^\lambda(S)V(S)\\
\end{multline*}
Finally, by using the expression for the marginal contribution of $i$ to
$S$:
\begin{displaymath}
\partial_i F_\mathcal{N}(\lambda) =
\sum_{\substack{S\subset\mathcal{N}\\ i\in\mathcal{N}\setminus S}}
P_{\mathcal{N}\setminus\{i\}}^\lambda(S)
\log\Big(1 + \mu x_i^*A(S)^{-1}x_i\Big)
\end{displaymath}
The computation of the derivative of $L_\mathcal{N}$ uses standard matrix
calculus and gives:
\begin{displaymath}
\partial_i L_\mathcal{N}(\lambda)
= \mu x_i^* \tilde{A}(\lambda)^{-1}x_i
\end{displaymath}
Using the following inequalities:
\begin{gather*}
\forall S\subset\mathcal{N}\setminus\{i\},\quad
P_{\mathcal{N}\setminus\{i\}}^\lambda(S)\geq
P_{\mathcal{N}\setminus\{i\}}^\lambda(S\cup\{i\})\\
\forall S\subset\mathcal{N},\quad P_{\mathcal{N}\setminus\{i\}}^\lambda(S)
\geq P_\mathcal{N}^\lambda(S)\\
\forall S\subset\mathcal{N},\quad A(S)^{-1} \geq A(S\cup\{i\})^{-1}\\
\end{gather*}
we get:
\begin{align*}
\partial_i F_\mathcal{N}(\lambda)
& \geq \sum_{\substack{S\subset\mathcal{N}\\ i\in\mathcal{N}\setminus S}}
P_\mathcal{N}^\lambda(S)
\log\Big(1 + \mu x_i^*A(S)^{-1}x_i\Big)\\
& \geq \frac{1}{2}
\sum_{\substack{S\subset\mathcal{N}\\ i\in\mathcal{N}\setminus S}}
P_\mathcal{N}^\lambda(S)
\log\Big(1 + \mu x_i^*A(S)^{-1}x_i\Big)\\
&\hspace{-3.5em}+\frac{1}{2}
\sum_{\substack{S\subset\mathcal{N}\\ i\in\mathcal{N}\setminus S}}
P_\mathcal{N}^\lambda(S\cup\{i\})
\log\Big(1 + \mu x_i^*A(S\cup\{i\})^{-1}x_i\Big)\\
&\geq \frac{1}{2}
\sum_{S\subset\mathcal{N}}
P_\mathcal{N}^\lambda(S)
\log\Big(1 + \mu x_i^*A(S)^{-1}x_i\Big)\\
\end{align*}
Using that $A(S)\geq I_d$ we get that:
\begin{displaymath}
\mu x_i^*A(S)^{-1}x_i \leq \mu
\end{displaymath}
Moreover:
\begin{displaymath}
\forall x\leq\mu,\; \log(1+x)\geq
\frac{\log\big(1+\mu\big)}{\mu} x
\end{displaymath}
Hence:
\begin{displaymath}
\partial_i F_\mathcal{N}(\lambda) \geq
\frac{\log\big(1+\mu\big)}{2\mu}
x_i^*\bigg(\sum_{S\subset\mathcal{N}}P_\mathcal{N}^\lambda(S)A(S)^{-1}\bigg)x_i
\end{displaymath}
Finally, using that the inverse is a matrix convex function over symmetric
positive definite matrices:
\begin{align*}
\partial_i F_\mathcal{N}(\lambda) &\geq
\frac{\log\big(1+\mu\big)}{2\mu}
x_i^*\bigg(\sum_{S\subset\mathcal{N}}P_\mathcal{N}^\lambda(S)A(S)\bigg)^{-1}x_i\\
& \geq \frac{\log\big(1+\mu\big)}{2\mu}
\partial_i L_\mathcal{N}(\lambda)
\end{align*}
\end{proof}
We can now prove lemma TODO from previous section.
\begin{proof}
Let us consider a feasible point $\lambda^*\in[0,1]^n$ such that $L_\mathcal{N}(\lambda^*)
= OPT(L_\mathcal{N}, B)$. By applying lemma~\ref{lemma:relaxation-ratio}
and lemma~\ref{lemma:rounding} we get a feasible point $\bar{\lambda}$ with at most
one fractional component such that:
\begin{equation}\label{eq:e1}
L_\mathcal{N}(\lambda^*) \leq \frac{1}{C_\mu}
F_\mathcal{N}(\bar{\lambda})
\end{equation}
Let $\lambda_i$ denote the fractional component of $\bar{\lambda}$ and $S$
denote the set whose indicator vector is $\bar{\lambda} - \lambda_i e_i$.
Using the fact that $F_\mathcal{N}$ is linear with respect to the $i$-th
component and is a relaxation of the value function, we get:
\begin{displaymath}
F_\mathcal{N}(\bar{\lambda}) = V(S) +\lambda_i V(S\cup\{i\})
\end{displaymath}
Using the submodularity of $V$:
\begin{displaymath}
F_\mathcal{N}(\bar{\lambda}) \leq 2 V(S) + V(i)
\end{displaymath}
Note that since $\bar{\lambda}$ is feasible, $S$ is also feasible and
$V(S)\leq OPT(V,\mathcal{N}, B)$. Hence:
\begin{equation}\label{eq:e2}
F_\mathcal{N}(\bar{\lambda}) \leq 2 OPT(V,\mathcal{N}, B)
+ \max_{i\in\mathcal{N}} V(i)
\end{equation}
Putting \eqref{eq:e1} and \eqref{eq:e2} together gives the results.
\end{proof}
|