1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
|
\documentclass{IEEEtran}
%\usepackage{mathptmx}
\usepackage[utf8]{inputenc}
\usepackage{amsmath,amsthm,amsfonts}
\usepackage{algorithm}
\usepackage{algpseudocode}
\newtheorem{lemma}{Lemma}
\newtheorem{fact}{Fact}
\newtheorem{example}{Example}
\newtheorem{prop}{Proposition}
\newcommand{\var}{\mathop{\mathrm{Var}}}
\newcommand{\condexp}[2]{\mathop{\mathbb{E}}\left[#1|#2\right]}
\newcommand{\expt}[1]{\mathop{\mathbb{E}}\left[#1\right]}
\newcommand{\norm}[1]{\lVert#1\rVert}
\newcommand{\tr}[1]{#1^*}
\newcommand{\ip}[2]{\langle #1, #2 \rangle}
\newcommand{\mse}{\mathop{\mathrm{MSE}}}
\DeclareMathOperator{\trace}{tr}
\DeclareMathOperator*{\argmax}{arg\,max}
\begin{document}
\section{Budget feasible mechanism}
\subsection{Data model}
\begin{itemize}
\item set of $n$ users $\mathcal{N} = \{1,\ldots, n\}$
\item each user has a public vector of features $x_i\in\mathbf{R}^d$ and some
undisclosed variable $y_i\in\mathbf{R}$
\item \textbf{Ridge regression model:}
\begin{itemize}
\item $y_i = \beta^*x_i + \varepsilon_i$
\item $\varepsilon_i \sim \mathcal{N}(0,\sigma^2)$,
$(\varepsilon_i)_{i\in \mathcal{N}}$ are mutually independent.
\item prior knowledge of $\beta$: $\beta\sim\mathcal{N}(0,\kappa I_d)$
\end{itemize}
\end{itemize}
\subsection{Economics}
\begin{itemize}
\item Value function:
\begin{align*}
\forall S\subset\mathcal{N},\; V(S)
& = \frac{1}{2}\log\det\left(I_d
+ \frac{\kappa}{\sigma^2}\sum_{i\in S} x_ix_i^*\right)\\
& = \frac{1}{2}\log\det X(S)
\end{align*}
\item each user $i$ has a cost $c_i$
\item the auctioneer has a budget constraint $B$
\item optimisation problem:
\begin{displaymath}
OPT(V,\mathcal{N}, B) = \max_{S\subset\mathcal{N}} \left\{ V(S)\,|\,
\sum_{i\in S}c_i\leq B\right\}
\end{displaymath}
\end{itemize}
\subsection{Relaxations of the value function}
We say that $R_\mathcal{N}:[0,1]^n\rightarrow\mathbf{R}$ is a relaxation of the
value function $V$ over $\mathcal{N}$ if it coincides with $V$ at binary
points. Formally, for any $S\subset\mathcal{N}$, let $\mathbf{1}_S$ denote the
indicator vector of $S$. $R_\mathcal{N}$ is a relaxation of $V$ over
$\mathcal{N}$ iff:
\begin{displaymath}
\forall S\subset\mathcal{N},\; R_\mathcal{N}(\mathbf{1}_S) = V(S)
\end{displaymath}
We can extend the optimisation problem defined above to a relaxation by
extending the cost function:
\begin{displaymath}
\forall \lambda\in[0,1]^n,\; c(\lambda)
= \sum_{i\in\mathcal{N}}\lambda_ic_i
\end{displaymath}
The optimisation problem becomes:
\begin{displaymath}
OPT(R_\mathcal{N}, B) =
\max_{\lambda\in[0,1]^n}\left\{R_\mathcal{N}(\lambda)\,|\, c(\lambda)\leq B\right\}
\end{displaymath}
The relaxations we will consider here rely on defining a probability
distribution over subsets of $\mathcal{N}$.
Let $\lambda\in[0,1]^n$, let us define:
\begin{displaymath}
P_\mathcal{N}(S,\lambda) = \prod_{i\in S}\lambda_i
\prod_{i\in\mathcal{N}\setminus S}(1-\lambda_i)
\end{displaymath}
$P_{\mathcal{N}}(S,\lambda)$ is the probability of picking the set $S$ if we select
a subset of $\mathcal{N}$ at random by deciding independently for each point to
include it in the set with probability $\lambda_i$ (and to exclude it with
probability $1-\lambda_i$).
We will consider two relaxations of the value function $V$ over $\mathcal{N}$:
\begin{itemize}
\item the \emph{multi-linear extension} of $V$:
\begin{align*}
F_\mathcal{N}(\lambda)
& = \mathbb{E}_{S\sim P_\mathcal{N}(S,\lambda)}\big[\log\det X(S)\big]\\
& = \sum_{S\subset\mathcal{N}} P_\mathcal{N}(S,\lambda) V(S)\\
& = \sum_{S\subset\mathcal{N}} P_{\mathcal{N}}(S,\lambda) \log\det X(S)\\
\end{align*}
\item the \emph{concave relaxation} of $V$:
\begin{align*}
L_{\mathcal{N}}(\lambda)
& = \log\det \mathbb{E}_{S\sim P_\mathcal{N}(S,\lambda)}\big[X(S)\big]\\
& = \log\det\left(\sum_{S\subset N}
P_\mathcal{N}(S,\lambda)X(S)\right)\\
& = \log\det\left(I_d
+ \frac{\kappa}{\sigma^2}\sum_{i\in\mathcal{N}}
\lambda_ix_ix_i^*\right)
\end{align*}
\end{itemize}
\begin{lemma}
The \emph{concave relaxation} $L_\mathcal{N}$ is concave\footnote{Hence
this relaxation is well-named!}.
\end{lemma}
\begin{proof}
This follows almost immediately from the concavity of the $\log\det$
function over symmetric positive semi-definite matrices. More precisely, if
$A$ and $B$ are two symmetric positive semi-definite matrices, then:
\begin{multline*}
\forall\alpha\in [0, 1],\; \log\det\big(\alpha A + (1-\alpha) B\big)\\
\geq \alpha\log\det A + (1-\alpha)\log\det B
\end{multline*}
\end{proof}
\begin{lemma}[Rounding]
For any feasible $\lambda\in[0,1]^n$, there exists a feasible
$\bar{\lambda}\in[0,1]^n$ such that at most one of its component is
fractional, that is, lies in $(0,1)$ and:
\begin{displaymath}
F_{\mathcal{N}}(\lambda)\leq F_{\mathcal{N}}(\bar{\lambda})
\end{displaymath}
\end{lemma}
\begin{proof}
We give a rounding procedure which given a feasible $\lambda$ with at least
two fractional components, returns some $\lambda'$ with one less fractional
component, feasible such that:
\begin{displaymath}
F(\lambda) \leq F(\lambda')
\end{displaymath}
Applying this procedure recursively yields the lemma's result.
Let us consider such a feasible $\lambda$. Let $i$ and $j$ be two
fractional components of $\lambda$ and let us define the following
function:
\begin{displaymath}
F_\lambda(\varepsilon) = F(\lambda_\varepsilon)
\quad\textrm{where} \quad
\lambda_\varepsilon = \lambda + \varepsilon\left(e_i-\frac{c_i}{c_j}e_j\right)
\end{displaymath}
It is easy to see that if $\lambda$ is feasible, then:
\begin{multline}\label{eq:convex-interval}
\forall\varepsilon\in\Big[\max\Big(-\lambda_i,(\lambda_j-1)\frac{c_j}{c_i}\Big), \min\Big(1-\lambda_i, \lambda_j
\frac{c_j}{c_i}\Big)\Big],\;\\
\lambda_\varepsilon\;\;\textrm{is feasible}
\end{multline}
Furthermore, the function $F_\lambda$ is convex, indeed:
\begin{align*}
F_\lambda(\varepsilon)
& = \mathbb{E}_{S'\sim P_{\mathcal{N}\setminus\{i,j\}}(S',\lambda)}\Big[
(\lambda_i+\varepsilon)\Big(\lambda_j-\varepsilon\frac{c_i}{c_j}\Big)V(S'\cup\{i,j\})\\
& + (\lambda_i+\varepsilon)\Big(1-\lambda_j+\varepsilon\frac{c_i}{c_j}\Big)V(S'\cup\{i\})\\
& + (1-\lambda_i-\varepsilon)\Big(\lambda_j-\varepsilon\frac{c_i}{c_j}\Big)V(S'\cup\{j\})\\
& + (1-\lambda_i-\varepsilon)\Big(1-\lambda_j+\varepsilon\frac{c_i}{c_j}\Big)V(S')\Big]\\
\end{align*}
Thus, $F_\lambda$ is a degree 2 polynomial whose dominant coefficient is:
\begin{multline*}
\frac{c_i}{c_j}\mathbb{E}_{S'\sim P_{\mathcal{N}\setminus\{i,j\}}(S',\lambda)}\Big[
V(S'\cup\{i\})+f(S'\cup\{i\})\\
-V(S'\cup\{i,j\})-f(S')\Big]
\end{multline*}
which is positive by submodularity of $V$. Hence, the maximum of
$F_\lambda$ over the interval given in \eqref{eq:convex-interval} is
attained at one of its limit, at which either the $i$-th or $j$-th component of
$\lambda_\varepsilon$ becomes integral.
\end{proof}
\begin{lemma}
There exists $C>0$ such that:
\begin{displaymath}
\forall\lambda\in[0,1]^n,\; C\,L_\mathcal{N}(\lambda)\leq
F_\mathcal{N}(\lambda)\leq L_{\mathcal{N}}(\lambda)
\end{displaymath}
\end{lemma}
\begin{lemma}
\begin{displaymath}
OPT(L_\mathcal{N}, B) \leq \frac{1}{C}OPT(V,\mathcal{N},B)
+ \max_{i\in\mathcal{N}}V(i)
\end{displaymath}
\end{lemma}
\begin{algorithm}
\caption{Budget feasible mechanism for ridge regression}
\begin{algorithmic}[1]
\State $i^* \gets \argmax_{j\in\mathcal{N}}V(j)$
\State $x^* \gets \argmax_{x\in[0,1]^n} \{L_{\mathcal{N}\setminus\{i^*\}}(x)
\,|\, c(x)\leq\frac{B}{2}\}$
\Statex
\If{$L(x^*) < CV(\{i^*\})$}
\State \textbf{return} $\{i^*\}$
\Else
\State $i \gets \argmax_{1\leq j\leq n}\frac{V(\{j\})}{c_j}$
\State $S \gets \emptyset$
\While{$c_i\leq \frac{B}{2}\frac{V(S\cup\{i\})-V(S)}{V(S\cup\{i\})}$}
\State $S \gets S\cup\{i\}$
\State $i \gets \argmax_{j\in\{1,\ldots,n\}\setminus S}
\frac{V(S\cup\{j\})-V(S)}{c_j}$
\EndWhile
\State \textbf{return} $S$
\EndIf
\end{algorithmic}
\end{algorithm}
\end{document}
|