1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
|
\documentclass[10pt]{beamer}
\usepackage[utf8x]{inputenc}
\usepackage{amsmath,bbm,verbatim}
\usepackage{algpseudocode,algorithm,bbding}
\usepackage{graphicx}
\DeclareMathOperator*{\argmax}{arg\,max}
\DeclareMathOperator*{\argmin}{arg\,min}
\usetheme{Boadilla}
\newcommand{\E}{{\tt E}}
\title[Harvard EconCS Seminar]{Budget Feasible Mechanism\\for Experimental
Design}
\author[Thibaut Horel]{Thibaut Horel, Stratis Ioannidis, and S. Muthukrishnan}
%\setbeamercovered{transparent}
\setbeamertemplate{navigation symbols}{}
\newcommand{\ie}{\emph{i.e.}}
\newcommand{\eg}{\emph{e.g.}}
\newcommand{\etc}{\emph{etc.}}
\newcommand{\etal}{\emph{et al.}}
\newcommand{\reals}{\ensuremath{\mathbb{R}}}
\begin{document}
\maketitle
\section{Motivation}
\begin{frame}{Motivation}
\begin{center}
\includegraphics<1>[scale=0.4]{stg-8.pdf}
\includegraphics<2>[scale=0.4]{stg-7.pdf}
\includegraphics<3>[scale=0.4]{stg-6.pdf}
\includegraphics<4>[scale=0.4]{stg-5.pdf}
\includegraphics<5>[scale=0.4]{stg-4.pdf}
\includegraphics<6>[scale=0.4]{stg-3.pdf}
\includegraphics<7>[scale=0.4]{stg-2.pdf}
\includegraphics<8>[scale=0.4]{stg-1.pdf}
\end{center}
\end{frame}
\begin{frame}{Application and Challenges}
\begin{itemize}
\item<1-> Applications
\begin{itemize}
\item Medicine/Sociology
\item Online surveys
\item Data markets
\end{itemize}
\vspace*{1cm}
\item<2-> Challenges
\begin{itemize}
\item Which users are \alert{the most valuable}?
\item What if users are \alert{strategic}?
\end{itemize}
\end{itemize}
\end{frame}
\begin{frame}{Answers}
\begin{itemize}
\item Which users are \alert{the most valuable}?
\pause
\begin{itemize}
\item Experimental Design
\end{itemize}
\pause
\item Experimental design with \alert{strategic agents}?\pause
\begin{itemize}
\item Budget Feasible Mechanisms [Singer, 2010]
\end{itemize}
\end{itemize}
\pause
\vspace*{1cm}
For Linear Regression:
\begin{itemize}
\item We present a deterministic, poly-time, truthful, budget
feasible, 12.9-aproximate mechanism.
\item Lower bound of 2.
\end{itemize}
\end{frame}
\section{Experimental design}
\begin{frame}{Outline}
\tableofcontents
\end{frame}
\begin{frame}{Outline}
\tableofcontents[currentsection]
\end{frame}
\begin{frame}{Problem}
\begin{center}
\includegraphics<1>[scale=0.4]{st2.pdf}
\includegraphics<2>[scale=0.4]{st3.pdf}
\includegraphics<3>[scale=0.4]{st4.pdf}
\includegraphics<4>[scale=0.4]{st5.pdf}
\includegraphics<5>[scale=0.4]{st6.pdf}
\includegraphics<6>[scale=0.4]{st6a.pdf}
\includegraphics<7>[scale=0.4]{st6b.pdf}
\includegraphics<8>[scale=0.4]{st6c.pdf}
\includegraphics<9>[scale=0.4]{st6d.pdf}
\includegraphics<10->[scale=0.4]{st6e.pdf}
\end{center}
\vspace*{-2em}
\begin{center}
\begin{overprint}
\onslide<1>\begin{center}$N$ ``experiment subjects'', $[N]\equiv
\{1,\ldots,N\}$ \end{center}
\onslide<2>
\begin{center}
$x_i\in \reals^d$: public features (\eg, age, gender, height, \etc)
\end{center}
\onslide<3>
\begin{center}
$y_i\in \reals$: private data (\eg, survey answer, medical test outcome, movie rating\ldots)
\end{center}
\onslide<4>
\textbf{Gaussian Linear Model.} There exists $\beta\in \reals^d$ s.t.\vspace*{-1em}
\begin{displaymath}
y_i = \beta^T x_i + \varepsilon_i,\quad
\varepsilon_i\sim\mathcal{N}(0,\sigma^2), \quad i\in [N]
\end{displaymath}
\onslide<5>
\begin{center}
Experimenter {\tt E} wishes to learn $\beta$.
\end{center}
\onslide<6>
\begin{center}
Each subject $i\in [N]$ has a cost $c_i\in \reals_+$
\end{center}
\onslide<7>
\begin{center}
\E\ has a budget $B$.
\end{center}
\onslide<8-9>
\begin{center}
\E\ pays subjects\visible<9>{; $y_i$ is revealed upon payment.}
\end{center}
\onslide<10>
\begin{center}
{\tt E} estimates ${\beta}$ through \emph{ridge regression}.
\end{center}
\onslide<11>
\begin{center}
Goal: Determine who to pay how much so that $\hat{\beta}$ is as
accurate as possible.
\end{center}
\end{overprint}
\end{center}
\end{frame}
\begin{frame}{Which Users Are Informative?}
Let $S\subseteq [N]$ be the set of selected users.
\pause
\E\ has a \emph{prior} on $\beta$:
$$\beta \sim \mathcal{N}(0,\sigma^2 R^{-1}). $$
\pause
MAP estimation after observing private values:
\begin{align*}
\hat{\beta} = \argmax_{\beta\in\reals^d} \mathbf{P}(\beta\mid y_i, i\in S)
\pause
=\argmin_{\beta\in\reals^d} \big(\sum_{i\in S} (y_i - {\beta}^Tx_i)^2
+ \beta^TR\beta\big)
\end{align*}
\pause
Variance:
\begin{displaymath}
\mathrm{Var}\, \hat{\beta} = \Big(R+\sum_{i\in S}x_ix_i^T\Big)^{-1}
\end{displaymath}
\pause
Minimizing variance: which scalarization?\pause{} \alert{D}eterminant (\alert{D}-optimal design)
\begin{displaymath}
\det\Big(R+\sum_{i\in S}x_i x_i^T\Big)^{-1}
\end{displaymath}
\end{frame}
\begin{frame}{Which Users Are Informative? (contd.)}
Let $S\subset [N]$ be the set of selected users.
\E\ has a \emph{prior} on $\beta$:
$$\beta \sim \mathcal{N}(0,\sigma^2 R^{-1}). $$
\pause
Information Gain: reduction of uncertainty on $\beta$
\begin{align*}
I(\beta;S)&=H(\beta)-H(\beta\mid y_i,i\in S)\\
\pause
& = \frac{1}{2}\log\det \Big(R+\sum_{i\in S}x_ix_i^T\Big)-\frac{1}{2}\log\det R
\end{align*}
\pause
\begin{alertblock}{}
\begin{center}
Maximizing information = Minimizing variance
\end{center}
\end{alertblock}
\end{frame}
\begin{frame}{Value function}
\begin{align*}
V(S)=\log\det\Big(R+\sum_{i\in S}x_ix_i^T\Big)
\end{align*}
\pause
Marginal contribution of a user:
\begin{align*}
&V(S\cup\{i\})-V(S) = \log(1+x_i^TA_S^{-1}x_i),\\
&\text{where } A_S = R + \sum_{i\in S}x_ix_i^T
\end{align*}
\pause
\begin{itemize}
\item Increase is greatest when $x_i$ \alert{spans a new direction}
\pause
\item Adding an experiment \alert{always helps}
\pause
\item $V$ is \alert{submodular}:
$$V(S\cup\{i\})-V(S) \geq V(S'\cup\{i\})-V(S'),\quad \text{ for }S\subseteq S'. $$
\end{itemize}
\end{frame}
\begin{frame}{Experimental Design}
\begin{block}{\textsc{Experimental Design Problem (EDP)} }
\vspace*{-0.4cm}
\begin{align*}
\text{Maximize}\qquad &V(S) = \log \det (\alert<2>{I}+\sum_{i\in S}x_ix_i^T) \\
\text{subj. to}\qquad &\textstyle\sum_{i\in S}c_i\leq B
\end{align*}
\end{block}
\pause
\begin{itemize}
\item $R=I$: homotropic prior
\pause
\item EDP is NP-hard
\pause
\item $V$ is submodular, monotone, non-negative, and $V(\emptyset)=0$
\pause
\item $\frac{e}{e-1}$-approximable (Sviridenko 2004, Krause and Guestrin 2005)
\end{itemize}
\end{frame}
\begin{frame}{Constant-approximation algorithm}
\begin{block}{Budgeted Submodular Maximization}
\begin{itemize}
\item Let $i^* = \arg\max_i V(\{i\})$
\item Compute $S_G$ greedily:
\begin{itemize}
\item repeatedly add element with \emph{highest
marginal-value-per-cost}:
\begin{align*}
i = \argmax_{j\in[N]\setminus
S}\frac{V(S\cup\{i\}) - V(S)}{c_i}
\end{align*}
\item stop when the budget is exhausted
\end{itemize}
\item Return:
\begin{itemize}
\item $i^*$ if $V(\{i^*\})>V(S_G)$
\item $S_G$ otherwise
\end{itemize}
\end{itemize}
\end{block}
\vspace*{2em}
\pause
This algorithm is:
\begin{itemize}
\item poly-time,
\pause
\item $\frac{5e}{e-1}$-approximate.
\end{itemize}
\end{frame}
\begin{frame}{Summary}
\begin{block}{\textsc{Experimental Design Problem (EDP)} }
\vspace*{-0.4cm}
\begin{align*}
\text{Maximize}\qquad &V(S) = \log \det (I+\sum_{i\in S}x_ix_i^T) \\
\text{subj. to}\qquad &\textstyle\sum_{i\in S}c_i\leq B
\end{align*}
\end{block}
\vspace{1cm}
\pause
Simple $\frac{2e}{e-1}$-approximate algorithm.
\end{frame}
\section{Experimental design with strategic users}
\begin{frame}{Outline}
\tableofcontents[currentsection]
\end{frame}
\begin{frame}{Strategic users}
\begin{center}
\includegraphics<1->[scale=0.3]{st10c.pdf}
\end{center}
\begin{itemize}
\visible<2-3>{\item
Subjects are \alert{strategic} and may lie about costs $c_i$.}
\visible<3>{\item
Subjects \alert{do not lie} about $y_i$ (tamper-proof experiments).}
\visible<4-5>{\item Goal: estimate $\beta$ accurately.}
\visible<5>{\item Adapt selection algorithm and payments.}
\end{itemize}
\end{frame}
\begin{frame}{Budget Feasible Mechanism Design [Singer 2010]}
Let $S\subset [N]$ be the selected users, and
$c=[c_i]_{i\in [N]}$ be the reported costs. \\\bigskip
\visible<2->{Let $V(S)\in\reals_+$ denote the \alert{value} of the experiments.}
\visible<3->{$$\text{High }V(S) \Leftrightarrow \text{ estimate }\hat{\beta}(S) \text{ is good}$$}
\visible<4->{
\begin{block}{Reverse Auction Mechanism}
A mechanism $\mathcal{M}(c)=(S(c),p(c))$ comprises
\begin{itemize}
\item an \alert{allocation function} $S:\reals_+^N\to 2^{[N]}$, and
\item a \alert{payment function} $p:\reals_+^N\to \reals_+^N$.
\end{itemize}
\end{block}
}
\end{frame}
\begin{frame}{Budget Feasible Mechanism Design [Singer 2010] }
We seek mechanisms $\mathcal{M}=(S,p)$ that are:
\pause
\vspace{0.3cm}
\begin{itemize}
\item Normalized: $p_i=0$ if $i\notin S$.
\vspace{0.2cm}
\pause
\item Individually Rational: $p_i\geq c_i,\;i\in S$
\vspace{0.2cm}
\pause
\item Truthful
\vspace{0.2cm}
\pause
\item budget feasible: $\sum_{i\in S} p_i \leq B$
\vspace{0.2cm}
\end{itemize}
\pause
\vspace{0.3cm}
In addition, $\mathcal{M}$ must be:
\vspace{0.3cm}
\pause
\begin{itemize}
\item computationally efficient: polynomial time
\pause
\vspace{0.2cm}
\item approximation: $OPT \leq \alpha V(S)$ with:
\begin{displaymath}
OPT = \max_{S\subset \mathcal{A}} \left\{V(S)\mid \sum_{i\in S}c_i\leq B\right\}
\end{displaymath}
\end{itemize}
\end{frame}
\begin{frame}{Strategic Subjects}
When $V$ is submodular:
% \vspace{1cm}
\pause
\begin{itemize}
\item \alert{Randomized}, poly-time, universally truthful mechanism,
approximation ratio: $7.91$ [Singer 2010, Chen \emph{et al.}, 2011]
\vspace{0.5cm}
\pause
\item Deterministic, \alert{exponential time}, truthful mechanism,
approximation ratio: $8.34$ [Singer 2010, Chen \emph{et al.}, 2011]
\vspace{0.5cm}
\pause
\item \alert{Deterministic, poly-time}, truthful mechanisms for specific submodular functions $V$ :
\vspace{0.3cm}
\begin{itemize}
\item \textsc{Knapsack}: $2+\sqrt{2}$ [Singer 2010, Chen \emph{et al.}, 2011]
\vspace{0.3cm}
\item \textsc{Matching}: 7.37 [Singer, 2010]
\vspace{0.3cm}
\item \textsc{Coverage}: 31 [Singer, 2012]
\vspace{0.3cm}
\end{itemize}
\end{itemize}
\end{frame}
\section{Main Results}
\begin{frame}{Outline}
\tableofcontents[currentsection]
\end{frame}
\begin{frame}{Our Main Results}
\begin{theorem}<2->
There exists a deterministic, budget feasible, individually rational and truthful mechanism for
EDP which runs in polynomial time. Its
approximation ratio is:
\begin{displaymath}
\frac{10e-3 + \sqrt{64e^2-24e + 9}}{2(e-1)}
\simeq 12.98
\end{displaymath}
\end{theorem}
\begin{theorem}<3->
There is no 2-approximate, budget feasible, individually rational and truthful mechanism for
EDP. \end{theorem}
\end{frame}
\begin{frame}{Myerson's Theorem}
\begin{theorem}[Myerson 1981]
A normalized mechanism $\mathcal{M} = (S,p)$ for a single parameter auction is
truthful iff:
\begin{enumerate}
\item<2->
$S$ is \alert{monotone}, \emph{i.e.},%\\ for any agent $i$ and $c_i' \leq c_i$, for any fixed costs $c_{-i}$ of agents in $[N]\setminus\{i\}$,
$$\text{for all}~c_i' \leq c_i,\quad i\in S(c_i,
c_{-i})\text{ implies }i\in S(c_i', c_{-i}),$$ and
\item<3->
subjects are paid \alert{threshold payments}, \emph{i.e.}, $$\text{for all }i\in S(c), \qquad p_i(c)=\inf\{c_i': i\in S(c_i', c_{-i})\}.$$
\end{enumerate}
\end{theorem}
\uncover<4->{Focus on \alert{monotone} mechanisms.}
\end{frame}
\begin{frame}{Can we use submodular maximization?}
\begin{block}{Allocation rule candidate}
\begin{itemize}
\item Compute $i^* = \arg\max_i V(\{i\})$
\item Compute $S_G$ greedily:
\begin{itemize}
\item repeatedly add element with \emph{highest
marginal-value-per-cost}:
\begin{align*}
i = \argmax_{j\in[N]\setminus
S}\frac{V(S\cup\{i\}) - V(S)}{c_i}\label{greedy}
\end{align*}
\item stop when the budget is exhausted
\end{itemize}
\item Return:
\begin{itemize}
\item $i^*$ if $V(\{i^*\})>V(S_G)$
\item $S_G$ otherwise
\end{itemize}
\end{itemize}
\end{block}
\vspace*{2em}
\pause
Two problems:
\begin{itemize}
\item $\max$ breaks monotonicity
\pause
\item threshold payments exceed budget
\end{itemize}
\end{frame}
\begin{frame}{Randomized Mechanism for Submodular $V$}
\begin{block}{Allocation rule}
\begin{itemize}
\item Compute $i^* = \arg\max_i V(\{i\})$
\item Compute $S_G$ greedily:
\begin{itemize}
\item repeatedly add element with \emph{highest
marginal-value-per-cost}:
\begin{align*}
i = \argmax_{j\in[N]\setminus
S}\frac{V(S\cup\{i\}) - V(S)}{c_i}\label{greedy}
\end{align*}
\item \alt<1>{stop when the budget is exhausted}{\alert<2>{stop when $c_k\leq\frac{B}{2}\frac{V(S_G\cup\{i\}) - V(S_G)}{V(S_G\cup\{i\})}$}}
\end{itemize}
\item Return:
\begin{itemize}
\alt<1-2>{
\item $i^*$ if $V(\{i^*\})>V(S_G)$
\item $S_G$ otherwise}{
\item
\alert<3>{Select at random between $i^*$ and $S_G$}}
\end{itemize}
\end{itemize}
\end{block}
\vspace{0.5cm}
\begin{overprint}
\onslide<4>
[Singer 2010] Along with threshold payments, this mechanism is:
\begin{itemize}
\item poly-time,
\item universally truthful,
\item budget-feasible
\item 7.91-approximate [Chen \etal\ 2011].
\end{itemize}
\onslide<5->
\vspace{0.5cm}
\alert{Problem:} $OPT\leq 7.91 \cdot \alert{\mathbb{E}[V(S)]}$\ldots
\end{overprint}
\end{frame}
\begin{frame}{Deterministic Mechanism for Submodular $V$}
\alert{Idea:} Use a proxy to compute the maximum
\begin{block}{Allocation rule}
\begin{itemize}
\item Compute $i^* = \arg\max_i V(\{i\})$
\item Compute $S_G$ greedily
\item Return:
\begin{itemize}
\item $i^*$ if $V(\{i^*\}) \geq \alt<1>{V(S_G)}{\alert<2>{OPT_{-i^*}}}$
\item $S_G$ otherwise
\end{itemize}
\end{itemize}
\end{block}
\vspace{0.5cm}
\uncover<3->{
[Singer 2010] Along with threshold payments, this mechanism is:
\begin{itemize}
\item truthful,
\item budget-feasible
\item 8.34-approximate [Chen \etal\ 2011].
\end{itemize}
}
\uncover<4->
{ \vspace{0.5cm}
\alert{Problem:} $OPT_{-i^*}$ is NP-hard to compute\ldots
}
\end{frame}
\begin{frame}{Blueprint for Deterministic, Poly-time Algorithm}
Azar and Gamzu 2008, Singer 2010, Chen \etal\ 2011:
\begin{block}{Allocation rule}
\begin{itemize}
\item Find $i^* = \arg\max_i V(\{i\})$
\item Compute $S_G$ greedily
\item Return:
\begin{itemize}
\item $\{i^*\}$ if $V(\{i^*\}) \geq \alert{L^*}$
\item $S_G$ otherwise
\end{itemize}
\end{itemize}
\end{block}
\vspace{0.5cm}
\begin{columns}[c]
\begin{column}{0.53\textwidth}
Replace $OPT$ with a \alert{relaxation $L^*$}:\pause
\begin{itemize}
\item computable in polynomial time
\pause
\item close to $OPT_{-i^*}$
\pause
\item monotone in costs $c$
\end{itemize}
\end{column}
\pause
\begin{column}{0.45\textwidth}
\begin{itemize}
\item \textsc{Knapsack} (Chen \etal, 2011)
\item \textsc{Coverage} (Singer, 2012)
\end{itemize}
\end{column}
\end{columns}
\end{frame}
\begin{frame}{Which relaxation?}
\alt<1>{\begin{block}{Submodular Maximization}
\vspace*{-0.4cm}
\begin{align*}
\text{Maximize}\qquad &V(S) \\
\text{subj. to}\qquad &\textstyle\sum_{i\in S}c_i\leq B
\end{align*}
\end{block}
}
{
\begin{block}{Multilinear Relaxation}
\vspace*{-0.6cm}
\begin{align*}
\text{Maximize}\qquad &\alert<2>{F(\lambda)=\mathbb{E}_{S\sim\lambda}[V(S)]}\\
\text{subj. to}\qquad &\textstyle\sum_{i\in [N]}\lambda_i c_i\leq B,\\& \lambda_i\in[0,1], i\in [N]
\end{align*}
\vspace*{-0.6cm}
\end{block}
}
\medskip
\pause
For $\lambda^*$ the optimal solution:
\begin{itemize}
\item
$V(S) = F(\lambda)\text{ for }\lambda_i=\mathbbm{1}_{i\in S}\quad\visible<3->{\Rightarrow\quad OPT \leq F(\lambda^*).}$
\pause
\item $F(\lambda^*)$ is monotone in $c$
\pause
\item Pipage rounding [Ageev and Sviridenko]:
\begin{displaymath}F(\lambda^*) \leq OPT + V(i^*)\end{displaymath}
\end{itemize}
\vspace{1cm}
\pause
Good relaxation candidate…\pause{} if it can be computed in poly-time.
\end{frame}
\begin{frame}{A relaxation for \textsc{EDP}}
\alt<1>{
\begin{block}{\textsc{EDP} }
\vspace*{-0.4cm}
\begin{align*}
\text{Maximize}\qquad &V(S) = \log \det\big(I+\sum_{i\in S}x_ix_i^T\big) \\
\text{subj. to}\qquad &\textstyle\sum_{i\in S}c_i\leq B
\end{align*}
\end{block}
}
{
\begin{block}{Convex Relaxation}
\vspace*{-0.4cm}
\begin{align*}
\text{Maximize}\qquad &\alert<2>{L(\lambda)} = \log \det \big(I+\sum_{i\in [N]}\alert<2>{\lambda_i}x_ix_i^T\big) \\
\text{subj. to}\qquad &\textstyle\sum_{i\in [N]}\alert<2>{\lambda_i}c_i\leq B, \lambda_i\in [0,1]
\end{align*}
\end{block}
}
\pause
\vspace{0.5cm}
$L(\lambda^*)$ is:
\begin{itemize}
\item Monotone in $c$
\pause
\item Poly-time: $L$ is concave
\pause
\item Close to $OPT$:\pause
\vspace{0.5cm}
\begin{block}{Technical Lemma}
\begin{displaymath}
OPT\leq L(\lambda^*) \leq 2 OPT + 2V(\{i^*\})
\end{displaymath}
\end{block}
\end{itemize}
\end{frame}
\begin{frame}{Proof Steps}
\begin{block}{Technical Lemma}
\begin{displaymath}
OPT\leq L(\lambda^*) \leq 2 OPT + 2V(\{i^*\})
\end{displaymath}
\end{block}
\uncover<2->{Relate $L$ to the multi-linear extension $F$:
\begin{itemize}
\item $F(\lambda)=\mathbb{E}_{S\sim\lambda}\Big[\log\det\big(I+\sum_{i\in S}x_ix_i^T\big)\Big]$
\item $L(\lambda)=\log\det\Big(I+\mathbb{E}_{S\sim\lambda}\big[\sum_{i\in S}x_ix_i^T\big]\Big)$
\end{itemize}
\bigskip}
\uncover<3->{
Bounding the derivatives of $\log\det$ $\Rightarrow$ $L(\lambda)\leq 2 F(\lambda)$
}
\bigskip
\uncover<4>{Finally, $F(\lambda^*)\leq OPT+V(\{i^*\})$ (pipage rounding).}
\end{frame}
\begin{frame}{Summary}
\begin{block}{Allocation rule}
\begin{itemize}
\item Compute $i^* = \arg\max_i V(\{i\})$
\item Compute $S_G$ greedily
\item Compute $L(\lambda^*) = \max_{\lambda}\Big\{\log \det \big(I+\sum_{i\in [N]}\lambda_ix_ix_i^T\big),\; \sum_{i\in[N]}\lambda_ic_i\leq B\Big\}$
\item Return:
\begin{itemize}
\item $i^*$ if $V(\{i^*\}) \geq L(\lambda^*)$
\item $S_G$ otherwise
\end{itemize}
\end{itemize}
\end{block}
\vspace{0.5cm}
\pause
Along with threshold payments:
\begin{itemize}
\item individually rational, truthful, budget-feasible
\pause
\item poly-time
\pause
\item 12.98-approximate
\end{itemize}
\end{frame}
\begin{frame}{}
\begin{center}
\Huge{\alert{Are we done?}}
\end{center}
\end{frame}
\begin{frame}{Tiny glitch}
\begin{block}{Allocation rule}
\begin{itemize}
\item Compute $i^* = \arg\max_i V(\{i\})$
\item Compute $S_G$ greedily
\item Compute $\alert<2>{L(\lambda^*) = \max_{\lambda}\Big\{\log \det \big(I+\sum_{i\in [N]}\lambda_ix_ix_i^T\big),\; \sum_{i\in[N]}\lambda_ic_i\leq B\Big\}}$
\item Return:
\begin{itemize}
\item $i^*$ if $V(\{i^*\}) \geq L(\lambda^*)$
\item $S_G$ otherwise
\end{itemize}
\end{itemize}
\end{block}
\pause
\vspace{0.5cm}
\begin{itemize}
\item $L(\lambda^*)$ is monotone in $c$
\pause
\item but not an approximation of $L(\lambda^*)$
\end{itemize}
\end{frame}
\begin{frame}{$\varepsilon$-truthfulness}
Assume that:
\begin{displaymath}
c_i'\leq c_i-\varepsilon \Rightarrow L(\lambda^*_{c'})\geq L(\lambda^*_c)+\delta
\end{displaymath}
\pause
\vspace{1cm}
Then, if $\tilde{L}(\lambda^*_c)$ is a $\delta$-approximate of $L(\lambda^*_c)$
\begin{displaymath}
c_i'\leq c_i-\varepsilon \Rightarrow \tilde{L}(\lambda^*_{c'})\geq \tilde{L}(\lambda^*_c)
\end{displaymath}
\vspace{1cm}
\pause
Implies $\varepsilon$-truthfulness:
\begin{center}
\alert{users have not incentive to lie by more $\varepsilon$}
\end{center}
\end{frame}
\begin{frame}{Sensitivity analysis}
\begin{block}{Goal ($\varepsilon$, $\delta$)-monotonicity}
\begin{displaymath}
c_i'\leq c_i-\varepsilon \Rightarrow L(\lambda^*_{c'})\geq L(\lambda^*_c)+\delta
\end{displaymath}
\end{block}
\pause
\vspace{0.5cm}
Bad news:
\begin{displaymath}
\frac{\partial L(\lambda^*_c)}{\partial c_i} \propto \lambda_i^*\only<3->{\alert{\geq \alpha}}
\end{displaymath}
\pause
\vspace{0.5cm}
Solution: regularize the problem
\begin{displaymath}
L(\lambda^*) = \max_{\lambda}\Big\{\log \det \big(I+\sum_{i\in [N]}\lambda_ix_ix_i^T\big),\; \sum_{i\in[N]}\lambda_ic_i\leq B,\; \alert{\lambda_i\geq \alpha}\Big\}
\end{displaymath}
\pause
\vspace{0.5cm}
Then carefully tune all the parameters…
\end{frame}
\section{Generalization}
\begin{frame}{Outline}
\tableofcontents[currentsection]
\end{frame}
\begin{frame}{Towards More General ML Tasks}
\begin{center}
\includegraphics<1>[scale=0.4]{st2.pdf}
\includegraphics<2>[scale=0.4]{st3.pdf}
\includegraphics<3>[scale=0.4]{st4.pdf}
\includegraphics<4-5>[scale=0.4]{st25.pdf}
\includegraphics<6->[scale=0.4]{st26.pdf}
\end{center}
\begin{overprint}
\onslide<1>
\begin{center}$N$ experiment subjects\end{center}
\onslide<2>
\begin{center}
$x_i\in \Omega$: public features
\end{center}
\onslide<3>
\begin{center}
$y_i\in \reals$: private data
\end{center}
\onslide<4-5>
\begin{center}
\textbf{Hypothesis.} There exists $h:\Omega\to \reals$ s.t.
% \begin{displaymath}
$y_i = h(x_i) + \varepsilon_i,$ %\quad
where $\varepsilon_i$ are independent.
\visible<5>{Examples: Logistic Regression, LDA, SVMs, \etc}
% \end{displaymath}
\end{center}
%$$y_i = \beta^Tx_i + \varepsilon_i, i=1,\ldots, N$$
%\end{center}
\onslide<6>
\begin{center}
Experimenter {\tt E} wishes to learn $h$, and has a prior distribution over $$\mathcal{H}=\{\text{mappings from }\Omega\text{ to }\reals\}.$$
\end{center}
\onslide<7->\begin{center}
\vspace*{-0.5cm}
% \begin{block}
%{Value function: Information gain}
\begin{displaymath}
V(S) = H(h) - H(h\mid y_i,i\in S),\quad S\subseteq[N]
\end{displaymath}
% \end{block}
\visible<8>{$V$ is submodular! [Krause and Guestrin 2009]}
\end{center}
\end{overprint}
\end{frame}
\begin{comment}
\begin{itemize}
\item Generative model: $y_i = f(x_i) + \varepsilon_i,\;i\in\mathcal{A}$
\pause
\item prior knowledge of the experimenter: $f$ is a \alert{random variable}
\pause
\item \alert{uncertainty} of the experimenter: entropy $H(f)$
\pause
\item after observing $\{y_i,\; i\in S\}$, uncertainty: $H(f\mid S)$
\end{itemize}
\pause
\vspace{0.5cm}
\begin{block}{Value function: Information gain}
\begin{displaymath}
V(S) = H(f) - H(f\mid S),\quad S\subset\mathcal{A}
\end{displaymath}
\end{block}
\pause
\vspace{0.5cm}
$V$ is \alert{submodular} $\Rightarrow$ randomized budget feasible mechanism
\end{frame}
\end{comment}
\begin{frame}{Conclusion}
\begin{itemize}
\item Experimental design + Budget Feasible Mechanisms
\vspace{1cm}
\pause
\item Deterministic mechanism for other ML Tasks? General submodular functions?
\vspace{1cm}
\pause
\item Approximation ratio $\simeq \alert{13}$. Lower bound: \alert{$2$}
\end{itemize}
\end{frame}
\begin{frame}{}
\vspace{\stretch{1}}
\begin{center}
{\Huge Thank you!}
\end{center}
\vspace{\stretch{1}}
\end{frame}
\begin{frame}{Non-Homotropic Prior}
Recall that:
\begin{align*}
V(S)&=H(\beta)-H(\beta\mid y_i,i\in S)\\
& = \frac{1}{2}\log\det (R^{-1}+\sum_{i\in S}x_ix_i^T)
\end{align*}
What if $R\neq I$?
\begin{theorem}
There exists a truthful, poly-time, and budget feasible mechanism for the objective
function $V$ above. Furthermore,
the algorithm computes a set $S^*$ such that:
\begin{displaymath}
OPT \leq
\frac{5e-1}{e-1}\frac{2}{\mu\log(1+1/\mu)}V(S^*) + 5.1
\end{displaymath}
where $\mu$ is the largest eigenvalue of $R$.
\end{theorem}
\end{frame}
\end{document}
|