1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
|
\documentclass[10pt]{beamer}
\usepackage[utf8x]{inputenc}
\usepackage{amsmath,verbatim}
\usepackage{algorithm,algpseudocode}
\usepackage{graphicx}
\DeclareMathOperator*{\argmax}{arg\,max}
\DeclareMathOperator*{\argmin}{arg\,min}
\usetheme{Boadilla}
\newcommand{\E}{{\tt E}}
\title[LATIN 2014]{Budget Feasible Mechanism\\for Experimental
Design}
\author[Thibaut Horel]{\textbf{Thibaut Horel}, Stratis Ioannidis, and S. Muthukrishnan}
%\setbeamercovered{transparent}
\setbeamertemplate{navigation symbols}{}
\newcommand{\ie}{\emph{i.e.}}
\newcommand{\eg}{\emph{e.g.}}
\newcommand{\etc}{\emph{etc.}}
\newcommand{\etal}{\emph{et al.}}
\newcommand{\reals}{\ensuremath{\mathbb{R}}}
\begin{document}
\maketitle
\begin{frame}{Motivation}
\begin{center}
\includegraphics<1>[scale=0.4]{stg-8.pdf}
\includegraphics<2>[scale=0.4]{stg-7.pdf}
\includegraphics<3>[scale=0.4]{stg-6.pdf}
\includegraphics<4>[scale=0.4]{stg-5.pdf}
\includegraphics<5>[scale=0.4]{stg-4.pdf}
\includegraphics<6>[scale=0.4]{stg-3.pdf}
\includegraphics<7>[scale=0.4]{stg-2.pdf}
\includegraphics<8>[scale=0.4]{stg-1.pdf}
\end{center}
\end{frame}
\begin{frame}{Applications}
\begin{itemize}
\item<1-> Applications
\begin{itemize}
\item Medicine/Sociology
\item Online surveys
\item Data markets
\end{itemize}
\vspace*{1cm}
\item<2-> Challenges
\begin{itemize}
\item Which users are \alert{the most valuable}?
\item What if users are \alert{strategic}?
\end{itemize}
\end{itemize}
\end{frame}
\begin{frame}{Contributions}
\pause
\begin{itemize}
\item Formulating the problem in the Experimental Design framework
\pause
\item Experimental design with \alert{strategic agents}?\pause
\begin{itemize}
\item Budget Feasible Mechanisms [Singer, 2010]
\end{itemize}
\end{itemize}
\pause
\vspace*{1cm}
For Linear Regression:
\begin{itemize}
\item deterministic, poly-time, truthful, budget
feasible, 12.9-approximate mechanism.
\pause
\item Lower bound of 2.
\pause
\item Prior results:
\pause
\begin{itemize}
\item deterministic exponential-time mechanism [Singer, 2010; Chen \etal, 2011]
\pause
\item universally truthful (randomized) mechanism [Chen \etal, 2011; Singer, 2012]
\end{itemize}
\end{itemize}
\pause
\vspace*{1cm}
Generalization to more general statistical learning tasks.
\end{frame}
\begin{frame}{Problem}
\begin{center}
\includegraphics<1>[scale=0.4]{st2.pdf}
\includegraphics<2>[scale=0.4]{st3.pdf}
\includegraphics<3>[scale=0.4]{st4.pdf}
\includegraphics<4>[scale=0.4]{st5.pdf}
\includegraphics<5>[scale=0.4]{st6.pdf}
\includegraphics<6>[scale=0.4]{st6a.pdf}
\includegraphics<7>[scale=0.4]{st6b.pdf}
\includegraphics<8>[scale=0.4]{st6c.pdf}
\includegraphics<9>[scale=0.4]{st6d.pdf}
\includegraphics<10->[scale=0.4]{st6e.pdf}
\end{center}
\vspace*{-2em}
\begin{center}
\begin{overprint}
\onslide<1>\begin{center}$N$ ``experiment subjects'', $[N]\equiv
\{1,\ldots,N\}$ \end{center}
\onslide<2>
\begin{center}
$x_i\in \reals^d$: public features (\eg, age, gender, height, \etc)
\end{center}
\onslide<3>
\begin{center}
$y_i\in \reals$: private data (\eg, survey answer, medical test outcome, movie rating\ldots)
\end{center}
\onslide<4>
\textbf{Gaussian Linear Model.} There exists $\beta\in \reals^d$ s.t.\vspace*{-1em}
\begin{displaymath}
y_i = \beta^T x_i + \varepsilon_i,\quad
\varepsilon_i\sim\mathcal{N}(0,\sigma^2), \quad i\in [N]
\end{displaymath}
\onslide<5>
\begin{center}
Experimenter {\tt E} wishes to learn $\beta$.
\end{center}
\onslide<6>
\begin{center}
Each subject $i\in [N]$ has a cost $c_i\in \reals_+$
\end{center}
\onslide<7>
\begin{center}
\E\ has a budget $B$.
\end{center}
\onslide<8-9>
\begin{center}
\E\ pays subjects\visible<9>{; $y_i$ is revealed upon payment.}
\end{center}
\onslide<10>
\begin{center}
{\tt E} estimates ${\beta}$ through \emph{ridge regression}.
\end{center}
\onslide<11>
\begin{center}
Goal: Determine who to pay how much so that $\hat{\beta}$ is as
accurate as possible.
\end{center}
\onslide<12>
\begin{center}
Users are \alert{strategic} and may lie about costs $c_i$\\users cannot manipulate $x_i$ or $y_i$.
\end{center}
\end{overprint}
\end{center}
\end{frame}
\begin{frame}{Value of data}
Let $S\subset [N]$ be the set of selected users.
\E\ has a \emph{prior} on $\beta$:
$$\beta \sim \mathcal{N}(0,\sigma^2 R^{-1}). $$
\pause
Information Gain: reduction of uncertainty on $\beta$
\begin{align*}
I(\beta;S)&=H(\beta)-H(\beta\mid y_i,i\in S)\\
\pause
& = \frac{1}{2}\log\det \Big(R+\sum_{i\in S}x_ix_i^T\Big)-\frac{1}{2}\log\det R
\end{align*}
\end{frame}
\begin{frame}{Experimental Design}
\begin{block}{\textsc{Experimental Design Problem (EDP)} }
\vspace*{-0.4cm}
\begin{align*}
\text{Maximize}\qquad &V(S) = \log \det (I+\sum_{i\in S}x_ix_i^T) \\
\text{subj. to}\qquad &\textstyle\sum_{i\in S}c_i\leq B
\end{align*}
\end{block}
\vspace*{1cm}
\pause
\begin{itemize}
\item EDP is NP-hard
\pause
\item $V$ is submodular, monotone, non-negative, and $V(\emptyset)=0$
\pause
\item $\frac{e}{e-1}$-approximable (Sviridenko 2004, Krause and Guestrin 2005)
\end{itemize}
\end{frame}
\begin{frame}{Experimental Design with Strategic Agents}
\begin{block}{Value function}
\vspace*{-0.4cm}
\begin{align*}
\text{Maximize}\qquad &V(S) = \log \det (I+\sum_{i\in S}x_ix_i^T) \\
\text{subj. to}\qquad &\textstyle\sum_{i\in S}c_i\leq B
\end{align*}
\end{block}
\vspace*{1cm}
\pause
Budgeted auction mechanism design problem. \pause
\vspace*{0.5cm}
Payments and allocation rule must be:
\begin{itemize}
\item normalized, truthful and individually rational
\pause
\item computable in polynomial time, give a good approximation ratio
\end{itemize}
\end{frame}
\begin{frame}{Our Main Results}
\begin{theorem}
There exists a deterministic, budget feasible, individually rational and truthful mechanism for
EDP which runs in polynomial time. Its
approximation ratio is:
\begin{displaymath}
\frac{10e-3 + \sqrt{64e^2-24e + 9}}{2(e-1)}
\simeq 12.98
\end{displaymath}
\end{theorem}
\pause
\vspace*{0.5cm}
\begin{theorem}
There is no 2-approximate, budget feasible, individually rational and truthful mechanism for
EDP. \end{theorem}
\pause
\vspace*{0.5cm}
\alert{Bonus:} two technical approximation results.
\end{frame}
\begin{frame}{Blueprint for Deterministic, Poly-time Algorithm}
Azar and Gamzu 2008, Singer 2010, Chen \etal\ 2011:
\begin{block}{Allocation rule}
\begin{itemize}
\item Find $i^* = \arg\max_i V(\{i\})$
\item Compute $S_G$ greedily
\item Return:
\begin{itemize}
\item $\{i^*\}$ if $V(\{i^*\}) \geq \alert<2>{OPT_{-i^*}}$
\item $S_G$ otherwise
\end{itemize}
\end{itemize}
\end{block}
\vspace{0.5cm}
\pause
\pause
\begin{columns}[c]
\begin{column}{0.53\textwidth}
Replace $OPT_{-i^*}$ with a \alert{relaxation $L^*$}:\pause
\begin{itemize}
\item computable in polynomial time
\pause
\item close to $OPT_{-i^*}$
\pause
\item monotone in costs $c$
\end{itemize}
\end{column}
\pause
\begin{column}{0.45\textwidth}
\begin{itemize}
\item \textsc{Knapsack} (Chen \etal, 2011)
\item \textsc{Coverage} (Singer, 2012)
\end{itemize}
\end{column}
\end{columns}
\end{frame}
\begin{frame}{A relaxation for \textsc{EDP}}
\alt<1>{
\begin{block}{\textsc{EDP} }
\vspace*{-0.4cm}
\begin{align*}
\text{Maximize}\qquad &V(S) = \log \det\big(I+\sum_{i\in S}x_ix_i^T\big) \\
\text{subj. to}\qquad &\textstyle\sum_{i\in S}c_i\leq B
\end{align*}
\end{block}
}
{
\begin{block}{Convex Relaxation}
\vspace*{-0.4cm}
\begin{align*}
\text{Maximize}\qquad &\alert<2>{L(\lambda)} = \log \det \big(I+\sum_{i\in [N]}\alert<2>{\lambda_i}x_ix_i^T\big) \\
\text{subj. to}\qquad &\textstyle\sum_{i\in [N]}\alert<2>{\lambda_i}c_i\leq B, \lambda_i\in [0,1]
\end{align*}
\end{block}
}
\pause
\vspace{0.5cm}
$L(\lambda^*)$ is:
\begin{itemize}
\item Monotone in $c$
\pause
\item Poly-time: $L$ is concave
\end{itemize}
\end{frame}
\begin{frame}{First technical result: integrality gap}
\begin{align*}
\text{Maximize}\qquad &L(\lambda) = \log \det \big(I+\sum_{i\in [N]}\lambda_ix_ix_i^T\big) \\
\text{subj. to}\qquad &\textstyle\sum_{i\in [N]}\lambda_ic_i\leq B, \lambda_i\in [0,1]
\end{align*}
\pause
\vspace{0.5cm}
\begin{block}{Integrality gap}
For $\lambda^*$ the optimal solution:
\begin{displaymath}
OPT\leq L(\lambda^*) \leq 2 OPT + 2V(\{i^*\})
\end{displaymath}
\end{block}
\pause
\vspace{0.5cm}
\alert{Proof:}
\begin{itemize}
\item relate $L$ to the multilinear extension of $V$
\item use \alert{pipage rounding} [Ageev and Sviridenko, 2004]
\end{itemize}
\end{frame}
\begin{frame}{Second technical result: monotone approximation}
\begin{block}{EDP-relaxed}
\begin{align*}
\text{Maximize}\qquad &L(\lambda) = \log \det \big(I+\sum_{i\in [N]}\lambda_ix_ix_i^T\big) \\
\text{subj. to}\qquad &\textstyle\sum_{i\in [N]}\lambda_ic_i\leq B, \lambda_i\in [\only<1-2>{0}\only<3->{\alert<3>{\alpha}},1]
\end{align*}
\end{block}
\vspace*{1cm}
\pause
Convex optimization only gives $\delta$-approximation $\alert{\Rightarrow}$ breaks monotonicity.
\vspace*{1cm}
\pause
Shrink feasible set:
\begin{itemize}
\pause
\item $L$ is ``sufficiently'' monotone
\pause
\item a $\delta$-approximation of its optimum is $\varepsilon(\delta,\alpha)$-monotone in the costs
\pause
\item tune $\delta$, $\alpha$ $\Rightarrow$ $\varepsilon$-truthful mechanism
\end{itemize}
\end{frame}
%\begin{frame}{Towards More General ML Tasks}
% \begin{center}
% \includegraphics<1>[scale=0.4]{st2.pdf}
% \includegraphics<2>[scale=0.4]{st3.pdf}
% \includegraphics<3>[scale=0.4]{st4.pdf}
% \includegraphics<4-5>[scale=0.4]{st25.pdf}
% \includegraphics<6->[scale=0.4]{st26.pdf}
% \end{center}
%
% \begin{overprint}
% \onslide<1>
% \begin{center}$N$ experiment subjects\end{center}
% \onslide<2>
% \begin{center}
% $x_i\in \Omega$: public features
% \end{center}
% \onslide<3>
% \begin{center}
% $y_i\in \reals$: private data
% \end{center}
% \onslide<4-5>
% \begin{center}
% \textbf{Hypothesis.} There exists $h:\Omega\to \reals$ s.t.
% % \begin{displaymath}
% $y_i = h(x_i) + \varepsilon_i,$ %\quad
% where $\varepsilon_i$ are independent.
% \visible<5>{Examples: Logistic Regression, LDA, SVMs, \etc}
% % \end{displaymath}
% \end{center}
%%$$y_i = \beta^Tx_i + \varepsilon_i, i=1,\ldots, N$$
% %\end{center}
% \onslide<6>
% \begin{center}
% Experimenter {\tt E} wishes to learn $h$, and has a prior distribution over $$\mathcal{H}=\{\text{mappings from }\Omega\text{ to }\reals\}.$$
% \end{center}
% \onslide<7->\begin{center}
%\vspace*{-0.5cm}
%% \begin{block}
%%{Value function: Information gain}
% \begin{displaymath}
% V(S) = H(h) - H(h\mid y_i,i\in S),\quad S\subseteq[N]
% \end{displaymath}
% % \end{block}
% \visible<8>{$V$ is submodular! [Krause and Guestrin 2009]}
% \end{center}
% \end{overprint}
%
%\end{frame}
\begin{frame}{Conclusion}
\begin{itemize}
\item Experimental design + Budget Feasible Mechanisms
\vspace{1cm}
\pause
\item Deterministic mechanism for other ML Tasks? General submodular functions?
\vspace{1cm}
\pause
\item Approximation ratio $\simeq \alert{13}$. Lower bound: \alert{$2$}
\end{itemize}
\end{frame}
\begin{frame}{}
\vspace{\stretch{1}}
\begin{center}
{\Huge Thank you!}
\end{center}
\vspace{\stretch{1}}
\end{frame}
\begin{frame}{Non-Homotropic Prior}
Recall that:
\begin{align*}
V(S)&=H(\beta)-H(\beta\mid y_i,i\in S)\\
& = \frac{1}{2}\log\det (R^{-1}+\sum_{i\in S}x_ix_i^T)
\end{align*}
What if $R\neq I$?
\begin{theorem}
There exists a truthful, poly-time, and budget feasible mechanism for the objective
function $V$ above. Furthermore,
the algorithm computes a set $S^*$ such that:
\begin{displaymath}
OPT \leq
\frac{5e-1}{e-1}\frac{2}{\mu\log(1+1/\mu)}V(S^*) + 5.1
\end{displaymath}
where $\mu$ is the largest eigenvalue of $R$.
\end{theorem}
\end{frame}
\end{document}
|