1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
|
\documentclass{beamer}
\usepackage[utf8x]{inputenc}
\usepackage[greek,english]{babel}
\usepackage[LGR,T1]{fontenc}
\usepackage{amsmath}
\usepackage{algpseudocode,algorithm}
\usepackage{graphicx}
\DeclareMathOperator*{\argmax}{arg\,max}
\usetheme{Boadilla}
\title[]{Budget Feasible Mechanisms for Experimental Design}
\author[Thibaut Horel]{Thibaut Horel\\ Joint work with Stratis Ioannidis and S. Muthukrishnan}
\institute[]{}
\setbeamercovered{transparent}
\setbeamertemplate{navigation symbols}{}
%\AtBeginSection[]
%{
%\begin{frame}<beamer>
%\frametitle{Outline}
%\tableofcontents[currentsection]
%\end{frame}
%}
\begin{document}
\begin{frame}
\maketitle
\end{frame}
\section{Introduction}
\begin{frame}{Motivation}
\begin{center}
\includegraphics<1-4>[scale=0.5]{1.pdf}
\includegraphics<5>[scale=0.5]{2.pdf}
\includegraphics<6>[scale=0.5]{3.pdf}
\includegraphics<7>[scale=0.5]{4.pdf}
\end{center}
\begin{center}
\begin{overprint}
\onslide<1>\begin{center}$N$ users\end{center}
\onslide<2>
\begin{center}
$x_i\in\mathbb{R}^d$: public features (e.g. age, sex, height, etc.)
\end{center}
\onslide<3>
\begin{center}
$y_i\in\mathbb{R}$: private date (e.g. disease, etc.)
\end{center}
\onslide<4>
\begin{center}
Linear model: $y_i = \beta^Tx_i + \varepsilon_i$
\end{center}
\begin{displaymath}
\beta^* = \arg\min_\beta \sum_i |y_i-\beta^Tx_i|^2
\end{displaymath}
\end{overprint}
\end{center}
\end{frame}
\begin{frame}{Challenges}
\begin{itemize}
\item Value of data?
\vspace{1cm}
\pause
\item How to optimize it?
\vspace{1cm}
\pause
\item Strategic users?
\end{itemize}
\end{frame}
\begin{frame}{Contributions}
\begin{itemize}
\item case of the linear regression
\vspace{1cm}
\pause
\item deterministic mechanism
\vspace{1cm}
\pause
\item generalization (randomized mechanism)
\end{itemize}
\end{frame}
\section{Budget feasible mechanism design}
\begin{frame}{Outline}
\tableofcontents
\end{frame}
\begin{frame}{Outline}
\tableofcontents[currentsection]
\end{frame}
\begin{frame}{Reverse auction}
\begin{itemize}
\item set of $N$ sellers $\mathcal{A} = \{1,\ldots,N\}$ and a buyer
\vspace{0.3cm}
\pause
\item $V$ value function of the buyer, $V:2^\mathcal{A}\rightarrow \mathbb{R}^+$
\vspace{0.3cm}
\pause
\item $c_i\in\mathbb{R}^+$ price of seller's $i$ good
\vspace{0.3cm}
\pause
\item $B$ budget constraint of the buyer
\end{itemize}
\vspace{0.5cm}
\pause
\begin{block}{Goal}
\begin{itemize}
\item Find $S\subset \mathcal{A}$ \alert{maximizing} $V(S)$
\vspace{0.3cm}
\item Find \alert{payment} $p_i$ to seller $i$
\end{itemize}
\end{block}
\end{frame}
\begin{frame}{Objectives}
Payments $(p_i)_{i\in S}$ must be:
\pause
\vspace{0.3cm}
\begin{itemize}
\item individually rational: $p_i\geq c_i,\;i\in S$
\vspace{0.2cm}
\pause
\item truthful: reporting one's true cost is a dominant strategy
\vspace{0.2cm}
\pause
\item budget feasible: $\sum_{i\in S} p_i \leq B$
\vspace{0.2cm}
\end{itemize}
\pause
\vspace{0.3cm}
Mechanism must be:
\vspace{0.3cm}
\pause
\begin{itemize}
\item computationally efficient: polynomial time
\pause
\vspace{0.2cm}
\item good approximation: $V(OPT) \leq \alpha V(S)$ with:
\begin{displaymath}
OPT = \arg\max_{S\subset \mathcal{A}} \left\{V(S)\mid \sum_{i\in S}c_i\leq B\right\}
\end{displaymath}
\end{itemize}
\end{frame}
\begin{frame}{Known results}
When $V$ is submodular:
\vspace{1cm}
\pause
\begin{itemize}
\item \alert{randomized} budget feasible mechanism,
approximation ratio: $7.91$ (Chen et al., 2011)
\vspace{1cm}
\pause
\item \alert{deterministic} mechanisms for:
\vspace{0.3cm}
\begin{itemize}
\item Knapsack: $2+\sqrt{2}$ (Chen et al., 2011)
\vspace{0.3cm}
\item Matching: 7.37 (Singer, 2010)
\vspace{0.3cm}
\item Coverage: 31 (Singer, 2012)
\vspace{0.3cm}
\end{itemize}
\end{itemize}
\end{frame}
\section{Budget feasible mechanism for linear regression}
\begin{frame}{Outline}
\tableofcontents[currentsection]
\end{frame}
\begin{frame}{Linear regression}
Each user $i\in\mathcal{A}$ has:
\begin{itemize}
\item Public feature vector $x_i\in\mathbb{R}^d$
\item Private data $y_i\in\mathbb{R}$
\end{itemize}
\pause
\vspace{0.5cm}
Gaussian linear model:
\begin{displaymath}
y_i = \beta^T x_i + \varepsilon_i,\quad\beta\in\mathbb{R}^d,\;
\varepsilon_i\sim\mathcal{N}(0,\sigma^2)
\end{displaymath}
\pause
\vspace{0.5cm}
Which users to select?\pause{} Experimental design $\Rightarrow$ D-optimal criterion
\vspace{0.5cm}
\begin{block}{Experimental Design}
\begin{displaymath}
\textsf{\alert{maximize}}\quad V(S) = \log\det\left(I_d + \sum_{i\in S} x_i x_i^T\right),\quad S\subset\mathcal{A}
\end{displaymath}
\end{block}
\end{frame}
\begin{frame}{Experimental design}
\begin{displaymath}
\textsf{\alert{maximize}}\quad V(S) = \log\det\left(I_d + \sum_{i\in S} x_i x_i^T\right),\quad S\subset\mathcal{A}
\end{displaymath}
\vspace{1cm}
\begin{itemize}
\item the non-strategic optimization problem is NP-hard
\vspace{0.3cm}
\pause
\item $V$ is submodular
\vspace{0.3cm}
\pause
\item previous results give a randomized budget feasible mechanism
\vspace{0.3cm}
\pause
\item deterministic mechanism?
\end{itemize}
\end{frame}
\begin{frame}{Main result}
\begin{theorem}
There exists a budget feasible, individually rational and truthful mechanism for
experimental design which runs in polynomial time. Its
approximation ratio is:
\begin{displaymath}
\frac{10e-3 + \sqrt{64e^2-24e + 9}}{2(e-1)}
\simeq 12.98
\end{displaymath}
\end{theorem}
\end{frame}
\begin{frame}{Sketch of proof}
\begin{block}{Mechanism (Chen et. al, 2011)}
\begin{itemize}
\item Find $i^* = \arg\max_i V(\{i\})$
\item Compute $S_G$ greedily
\item Return:
\begin{itemize}
\item $\{i^*\}$ if $V(\{i^*\}) \geq \only<1-2>{V(OPT_{-i^*})}\only<3>{\alert{V(OPT_{-i^*})}}\only<4->{\alert{L^*}}$
\item $S_G$ otherwise
\end{itemize}
\end{itemize}
\end{block}
\vspace{0.5cm}
\pause
Valid mechanism, approximation ratio: 8.34
\vspace{0.5cm}
\pause
\alert{Problem:} $OPT_{-i^*}$ is NP-hard to compute
\vspace{0.5cm}
\pause
\alert{Solution:} Replace $V(OPT_{-i^*})$ with $L^*$:
\pause
\begin{itemize}
\item computable in polynomial time
\pause
\item close to $V(OPT_{-i^*})$
\end{itemize}
\end{frame}
\begin{frame}{Sketch of proof (2)}
\begin{displaymath}
L^* = \arg\max_{\lambda\in [0,1]^n} \left\{\log\det\left(I_d + \sum_i \lambda_i x_i x_i^T\right)\mid \sum_{i=1}^n\lambda_i c_i\leq B\right\}
\end{displaymath}
\vspace{1cm}
\begin{itemize}
\item polynomial time?\pause{} convex optimization problem
\pause
\vspace{0.5cm}
\item close to $V(OPT_{-i^*})$?\pause
\vspace{0.5cm}
\begin{block}{Technical lemma}
\begin{displaymath}
L^* \leq 2 V(OPT) + V(\{i^*\})
\end{displaymath}
\end{block}
\end{itemize}
\end{frame}
\section{Generalization}
\begin{frame}{Outline}
\tableofcontents[currentsection]
\end{frame}
\begin{frame}{Generalization}
\begin{itemize}
\item Generative model: $y_i = f(x_i) + \varepsilon_i,\;i\in\mathcal{A}$
\pause
\item prior knowledge of the experimenter: $f$ is a \alert{random variable}
\pause
\item \alert{uncertainty} of the experimenter: entropy $H(f)$
\pause
\item after observing $\{y_i,\; i\in S\}$, uncertainty: $H(f\mid S)$
\end{itemize}
\pause
\vspace{0.5cm}
\begin{block}{Value function: entropy reduction}
\begin{displaymath}
V(S) = H(f) - H(f\mid Y_S),\quad S\subset\mathcal{A}
\end{displaymath}
\end{block}
\pause
\vspace{0.5cm}
$V$ is \alert{submodular} $\Rightarrow$ randomized budget feasible mechanism
\end{frame}
\begin{frame}{Conclusion}
\begin{itemize}
\item Experimental design + Auction theory = powerful framework
\vspace{1cm}
\pause
\item deterministic mechanism for the general case? other learning tasks?
\vspace{1cm}
\pause
\item approximation ratio $\simeq \alert{13}$. Lower bound: \alert{$2$}
\end{itemize}
\end{frame}
\end{document}
|