summaryrefslogtreecommitdiffstats
path: root/slides/slides.tex
blob: 11ec280733452e9bcca801422a648da5afabd8c7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
\documentclass{beamer}
\usepackage[utf8x]{inputenc}
\usepackage[greek,english]{babel}
\usepackage[LGR,T1]{fontenc}
\usepackage{amsmath}
\usepackage{algpseudocode,algorithm}
\DeclareMathOperator*{\argmax}{arg\,max}
\usetheme{Boadilla}
\usecolortheme{beaver}
\title[Budget Feasible Mechanisms for Experimental Design]{Budget Feasible Mechanisms for Experimental Design}
\author{xx\\ Joint work with yy and zz}
\institute[]{}
\setbeamercovered{transparent}

\AtBeginSection[]
{
\begin{frame}<beamer>
\frametitle{Outline}
\tableofcontents[currentsection]
\end{frame}
}

\begin{document}

\begin{frame}
\maketitle
\end{frame}

\begin{frame}
\tableofcontents
\end{frame}

\section{Experimental Design}
\begin{frame}{Experimental Design}
    An experimenter is about to conduct an experiment with users. 
    \begin{itemize}
        \item $n$ users
        \item $x_i\in\mathbb{R}^d$: public features of user $i$
        \item $c_i\in\mathbb{R}^+$: cost of user $i$ for taking part in the experiment
    \end{itemize}

    When paid $c_i$, user $i$ reveals $y_i$:
    \begin{displaymath}
        y_i = \beta^T x_i + \varepsilon_i,\quad\beta\in\mathbb{R}^d,\;
        \varepsilon_i\sim\mathcal{N}(0,\sigma^2)
    \end{displaymath}
    $\beta$ is \alert{unknown} to the experimenter.

    \begin{block}{}
    \alert{Question:} budget constraint $B$, which users to pick to learn $\beta$ as
    well as possible without spending more than $B$?
    \end{block}
\end{frame}

\begin{frame}{Evaluation criterion}
    \begin{block}{}
        \alert{Question:} How to measure the helpfulness of a set of users $S$ in learning $\beta$?
    \end{block}
    
    \vspace{0.5cm}

    Bayesian approach:
    \begin{itemize}
        \item \emph{a priori} knowledge: prior distribution over $\beta$
        \item the entropy of $\beta$, $H(\beta)$ measures the uncertainty of the experimenter
        \item after observing $Y_S = \{y_i,\; i\in S\}$, uncertainty becomes $H(\beta\mid Y_S)$
    \end{itemize}

    \vspace{0.5cm}

    The value of $S$ is the \alert{entropy reduction}:
    \begin{displaymath}
        V(S) = H(\beta) - H(\beta\mid Y_S)
    \end{displaymath}
\end{frame}

\begin{frame}{Value function}
    Gaussian linear model:
    \begin{displaymath}
        y_i = \beta^T x_i + \varepsilon_i,\quad\beta\in\mathbb{R}^d,\;
        \varepsilon_i\sim\mathcal{N}(0,\sigma^2)
    \end{displaymath}
    
    Typical prior distribution $\beta\sim\mathcal{N}(0,\tau I_d)$
   
    \vspace{0.5cm}

    \begin{block}{}
        Under the Gaussian linear model and Gaussian prior distribution:
        \begin{displaymath}
            V(S) = \log\det\Big(I_d + \lambda\sum_{i\in S}x_i x_i^T \Big)
        \end{displaymath}
    \end{block}

    \vspace{0.5cm}

    \alert{Remark:} $V$ can be computed efficiently using a Cholesky decomposition
\end{frame}

\section{Non-strategic case}
\begin{frame}{Optimization Problem}
    \begin{block}{P1}
        \begin{align*}
            &\text{maximize}\; V(S) = \log\det\Big(I_d + \lambda\sum_{i\in S}x_i x_i^T \Big)\\
            &\text{subject to}\; \sum_{i\in S}c_i\leq B\quad\text{(Knapsack constraint)}
        \end{align*}
    \end{block}

    \onslide<2->
    Good news:

    $V$ is submodular (diminishing return):
    \begin{displaymath}
        \forall S\subseteq T\, \forall i,\; V(S\cup\{i\}) - V(S)\geq
        V(T\cup\{i\}) - V(T)
    \end{displaymath}

    \onslide<3->
    Bad news:

    Maximizing a submodular function under a knapsack constraint is NP-hard (even
    in the specific case of $\log\det$)
\end{frame}

\begin{frame}{Approximation}
    \begin{definition}[Approximation ratio]
        Let $OPT$ denote the optimal solution to P1, $S$ is an $\alpha$-approximation
        if:
        \begin{displaymath}
            V(OPT)\leq \alpha V(S)
        \end{displaymath}
    \end{definition}

    \vspace{0.5cm}

    \begin{theorem}[Sviridenko]
        \begin{enumerate}
            \item There is an algorithm which returns a set $S$ which is a $\frac{e}{e-1}$-approximation
            \item No algorithm can do better unless P=NP
        \end{enumerate}
    \end{theorem}

    \vspace{0.5cm}

    The algorithm is a combination of an enumeration method and a greedy heuristic.
\end{frame}

\begin{frame}{Greedy algorithm}
    \begin{block}{Greedy($V$, $B$)}  
        \begin{algorithmic}
            \State $i \gets \argmax_{1\leq j\leq n}\frac{V(j)}{c_j}$
            \State $S \gets \emptyset$
            \While{$c_i\leq B - \sum_{j\in S} c_j$}
                \State $S \gets S\cup\{i\}$
                \State $i \gets \argmax_{1\leq j\leq n}
                \frac{V(S\cup\{j\})-V(S)}{c_j}$
            \EndWhile
            \State \textbf{return} $S$
        \end{algorithmic}
    \end{block}

    \vspace{0.5cm}

    \begin{lemma}
        Greedy has an \alert{unbounded} approximation ratio.
    \end{lemma}
\end{frame}

\begin{frame}
    \begin{block}{MaxGreedy}
        \begin{algorithmic}
            \State $i^* \gets \argmax_{1\leq j\leq n} V(j)$
            \State $S \gets$ Greedy($V$, $B$)
            \If{$V(i^*)\geq V(S)$}
                \State \textbf{return} $\{i^*\}$
            \Else
                \State \textbf{return} $S$
            \EndIf
        \end{algorithmic}
    \end{block}

    \vspace{0.5cm}

    \begin{lemma}
        MaxGreedy is a $\frac{5e}{e-1}$ approximation
    \end{lemma}
\end{frame}

\section{Strategic case}

\begin{frame}{Reverse auction}

    \alert{Problem:} In real life, user are strategic agents. They lie about their costs.
    This is a \alert{reverse auction}: the experimenter wants to buy data
    from users.

    \vspace{0.5cm}

    \alert{Goal:} Design an auction mechanism:
    \begin{itemize}
        \item a selection rule $s: (c_1,\ldots,c_n) \mapsto (s_1,\ldots,s_n)$,
            $s_i\in\{0,1\}$
        \item a payment rule $p: (c_1,\ldots,c_n) \mapsto (p_1,\ldots,p_n)$,
            $p_i\in\mathbb{R}^+$
    \end{itemize}

    \vspace{0.5cm}

    As usual in auction mechanism design, we want payments to be:
    \begin{itemize}
        \item individually rational: $p_i\geq c_i$
        \item truthful: reporting one's true cost is a dominant strategy
        \item normalized: $s_i=0$ implies $p_i=0$
    \end{itemize}
\end{frame}

\begin{frame}{Optimization problem for budget feasible auctions}
    \begin{block}{P2}
        \begin{align*}
            &\text{maximize}\; V\big(s(c_1,\ldots,c_n)\big) = \log\det\Big(I_d + \lambda\sum_{i\in S}x_i x_i^T \Big)\\
            &\text{subject to}\; \sum_{i\in S}\alert{p_i}\leq B\quad\text{(budget feasible)}
        \end{align*}
        where the payments are further constrained to be individually rational, truthful
        and normalized
    \end{block}

    \vspace{1cm}

    This is again NP-hard $\Rightarrow$ we seek good approximation ratios
\end{frame}

\begin{frame}{Myerson's theorem}
    \begin{theorem}[Myerson]
        Let $(s, p)$ be a mechanism. If:
        \begin{itemize}
            \item $s$ is \alert{monotonic}: if $c_i\leq c_i'$ then $s_i \geq s_i'$
            \item users are paid \alert{threshold payments}: $p_i = \inf\{c_i':i\notin s(c_i',c_{-i})\}$
        \end{itemize}
        Then, the mechanism is individually rational and truthful.
    \end{theorem}

    \vspace{1cm}

    \alert{Consequence:} It suffices to find a monotonic selection rule such that
    the threshold payments are within the budget constraint.
\end{frame}

\begin{frame}{Main result}
    \begin{theorem}
        There is a budget feasible, individually rational and truthful mechanism for
        the experimental design problem which runs in polynomial time. Its
        approximation ratio is:
        \begin{displaymath}
        \frac{10e-3 + \sqrt{64e^2-24e + 9}}{2(e-1)}
        \simeq 12.98 
        \end{displaymath}
    \end{theorem}
\end{frame}
\end{document}