aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rw-r--r--python/notebooks/risk_sabo.ipynb95
1 files changed, 39 insertions, 56 deletions
diff --git a/python/notebooks/risk_sabo.ipynb b/python/notebooks/risk_sabo.ipynb
index 5106056c..c220d23c 100644
--- a/python/notebooks/risk_sabo.ipynb
+++ b/python/notebooks/risk_sabo.ipynb
@@ -7,22 +7,17 @@
"outputs": [],
"source": [
"import datetime\n",
- "import globeop_reports as go\n",
"import pandas as pd\n",
- "import analytics\n",
+ "import serenitas.analytics\n",
"import numpy as np\n",
"\n",
"from pandas.tseries.offsets import BDay, BMonthEnd\n",
- "from analytics.scenarios import run_portfolio_scenarios\n",
+ "from serenitas.analytics.scenarios import run_portfolio_scenarios\n",
"from risk.portfolio import build_portfolio, generate_vol_surface\n",
- "from pathlib import Path"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### Set dates"
+ "from pathlib import Path\n",
+ "\n",
+ "from serenitas.analytics.index_data import load_all_curves\n",
+ "from serenitas.utils.db import serenitas_pool"
]
},
{
@@ -31,10 +26,8 @@
"metadata": {},
"outputs": [],
"source": [
- "position_date = (datetime.date.today() - BMonthEnd(1)).date()\n",
- "spread_date = position_date\n",
- "analytics._local = False\n",
- "analytics.init_ontr(spread_date)\n",
+ "run_date = datetime.date.today()\n",
+ "serenitas.analytics._local = False\n",
"base_dir = Path('/home/serenitas/Daily/Risk/')"
]
},
@@ -51,18 +44,22 @@
"metadata": {},
"outputs": [],
"source": [
- "spread_shock = np.array([-100., -25., 1., +25. , 100.])\n",
- "spread_shock /= analytics._ontr['HY'].spread\n",
- "portf, _ = build_portfolio(position_date, spread_date)\n",
- "vol_surface = generate_vol_surface(portf, 5)\n",
- "portf.reset_pv()\n",
- "scens = run_portfolio_scenarios(portf, date_range=[pd.Timestamp(spread_date)], params=['pnl'],\n",
- " spread_shock=spread_shock,\n",
- " vol_shock=[0.0],\n",
- " corr_shock=[0.0],\n",
- " vol_surface=vol_surface)\n",
- "scens = scens.sum(axis=1)\n",
- "scens.to_csv(base_dir / f\"csscen_{position_date:%Y%m%d}.csv\")"
+ "scenarios = []\n",
+ "for position_date in pd.date_range((datetime.date.today() - BMonthEnd(2)), (datetime.date.today() - BMonthEnd(1)), freq=\"BM\"):\n",
+ " spread_date = position_date\n",
+ " spread_shock = np.array([-100., -25., 1., +25. , 100.])\n",
+ " serenitas.analytics.init_ontr(spread_date)\n",
+ " spread_shock /= serenitas.analytics._ontr['HY'].spread\n",
+ " portf, _ = build_portfolio(position_date.date(), spread_date.date())\n",
+ " vol_surface = generate_vol_surface(portf, 5)\n",
+ " portf.reset_pv()\n",
+ " scens = run_portfolio_scenarios(portf, date_range=[pd.Timestamp(spread_date)], params=['pnl'],\n",
+ " spread_shock=spread_shock,\n",
+ " vol_shock= [0.0],\n",
+ " corr_shock=[0.0],\n",
+ " vol_surface=vol_surface)\n",
+ " scenarios.append(scens.sum(axis=1))\n",
+ "pd.concat(scenarios).to_csv(base_dir / f\"csscen_{run_date:%Y%m%d}.csv\")"
]
},
{
@@ -78,32 +75,18 @@
"metadata": {},
"outputs": [],
"source": [
- "_, portf = build_portfolio(position_date, spread_date)\n",
- "jtd = portf.jtd_single_names()"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "from analytics.index_data import load_all_curves\n",
- "from utils.db import serenitas_pool\n",
- "conn = serenitas_pool.getconn()\n",
- "surv_curves = load_all_curves(conn, spread_date)\n",
- "serenitas_pool.putconn(conn)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "jtd_sabo = jtd[[jtd.columns[0]]].join(surv_curves.groupby(level=0).first()[['name', 'company_id']])\n",
- "jtd_sabo.columns = ['jtd', 'name', 'company_id']\n",
- "jtd_sabo.to_csv(base_dir / f\"jtd_{position_date:%Y%m%d}.csv\")"
+ "for position_date in pd.date_range((datetime.date.today() - BMonthEnd(12)), (datetime.date.today() - BMonthEnd(1)), freq=\"BM\"):\n",
+ " spread_date = position_date\n",
+ " _, portf = build_portfolio(position_date.date(), spread_date.date())\n",
+ " jtd = portf.jtd_single_names()\n",
+ " conn = serenitas_pool.getconn()\n",
+ " surv_curves = load_all_curves(conn, spread_date.date())\n",
+ " serenitas_pool.putconn(conn)\n",
+ " surv_curves['spread'] = surv_curves['curve'].apply(lambda sc: sc.to_series(forward=False)[5] * (1-sc.recovery_rates[5]))\n",
+ " jtd_sabo = jtd[[jtd.columns[0]]].join(surv_curves.groupby(level=0).first()[['name', 'company_id', 'spread']])\n",
+ " jtd_sabo.columns = ['jtd', 'name', 'company_id', 'spread']\n",
+ " jtd_sabo = jtd_sabo.groupby(['company_id', 'name']).sum()\n",
+ " jtd_sabo.to_csv(base_dir / f\"jtd_{position_date:%Y%m%d}.csv\")"
]
},
{
@@ -116,9 +99,9 @@
],
"metadata": {
"kernelspec": {
- "display_name": "Python 3",
+ "display_name": "Python 3.9.1 64-bit",
"language": "python",
- "name": "python3"
+ "name": "python39164bitf8da796bd4214fb9a205dc5a90db6a8a"
},
"language_info": {
"codemirror_mode": {
@@ -130,7 +113,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
- "version": "3.8.6"
+ "version": "3.9.1-final"
}
},
"nbformat": 4,