aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rw-r--r--python/load_globeop_report.py37
1 files changed, 25 insertions, 12 deletions
diff --git a/python/load_globeop_report.py b/python/load_globeop_report.py
index 6b926ba7..6fd998b9 100644
--- a/python/load_globeop_report.py
+++ b/python/load_globeop_report.py
@@ -51,25 +51,38 @@ def pnl_reports():
if date in df:
print(date)
df[date] = pd.read_csv(f)
- df = pd.concat(df)
+ df = pd.concat(df, names=['date', 'to_drop'])
+ df.reset_index(level='to_drop', drop=True, inplace=True)
+ df.Strat = df.Strat.str.replace("^SERCGMAST__M_", "", 1)
for col in ['Fund', 'Strat', 'Port', 'LongShortIndicator', 'InvCcy']:
df[col] = df[col].astype('category')
df.to_hdf('globeop.hdf', 'pnl', format='table', complib='blosc')
+def ts(s):
+ return pd.Timestamp(s)
+
+def monthly_pnl_bycusip(df, strats):
+ df = df[(df.Strat.isin(strats)) & (df.CustAcctName=='V0NSCLMAMB')]
+ pnl_cols = ['BookUnrealMTM', 'BookRealMTM', 'BookRealIncome', 'BookUnrealIncome',
+ 'TotalBookPL']
+ return df.groupby('InvId').resample('M', 'last')[['MTD '+col for col in pnl_cols]]
if __name__=='__main__':
- valuation_reports()
- pnl_reports()
+ #valuation_reports()
+ #pnl_reports()
df_val = pd.read_hdf('globeop.hdf', 'valuation_report')
df_pnl = pd.read_hdf('globeop.hdf', 'pnl')
nav = df_val[df_val.Fund=='SERCGMAST'].groupby('PeriodEndDate')['EndBookNAV'].sum()
- subprime_strats = ['SERCGMAST__M_MTG_GOOD', 'SERCGMAST__M_MTG_RW',
- 'SERCGMAST__M_MTG_IO','SERCGMAST__M_MTG_THRU',
- 'SERCGMAST__M_MTG_B4PR']
- clo_strats = ['SERCGMAST__M_CLO_BBB', 'SERCGMAST__M_CLO_AAA', 'SERCGMAST__M_CLO_BB20']
- subprime = df_pnl[df_pnl.Strat.isin(subprime_strats)]
- subprime_monthly_pnl = subprime.groupby(level=0).sum()['MTD TotalBookPL'].resample('M', how='last')
- clo = df_pnl[df_pnl.Strat.isin(clo_strats)]
- clo_monthly_pnl = clo.groupby(level=0).sum()['MTD TotalBookPL'].resample('M', how='last')
+ subprime_strats = ['MTG_GOOD', 'MTG_RW', 'MTG_IO','MTG_THRU', 'MTG_B4PR']
+ clo_strats = ['CLO_BBB', 'CLO_AAA', 'CLO_BB20']
+
+ ## daily pnl by cusip
+ #subprime_daily_pnl = daily_pnl_bycusip(df_pnl, subprime_strats)
+
+ df_monthly = monthly_pnl_bycusip(df_pnl, subprime_strats)
+ #df_monthly.loc[idx[ts('2015-01-01'):ts('2015-01-31'),:],:]
+
+ # clo = df_pnl[df_pnl.Strat.isin(clo_strats)]
+ # clo_monthly_pnl = clo.groupby(level=0).sum()['MTD TotalBookPL'].resample('M', how='last')
- clo.groupby(level=0).sum()['2015-12-01':'2015-12-31']
+ # clo.groupby(level=0).sum()['2015-12-01':'2015-12-31']