aboutsummaryrefslogtreecommitdiffstats
path: root/python/notebooks/brinker_reports.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'python/notebooks/brinker_reports.ipynb')
-rw-r--r--python/notebooks/brinker_reports.ipynb96
1 files changed, 96 insertions, 0 deletions
diff --git a/python/notebooks/brinker_reports.ipynb b/python/notebooks/brinker_reports.ipynb
new file mode 100644
index 00000000..9ea8f5ef
--- /dev/null
+++ b/python/notebooks/brinker_reports.ipynb
@@ -0,0 +1,96 @@
+{
+ "cells": [
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import datetime\n",
+ "from pandas.tseries.offsets import BDay, MonthEnd\n",
+ "import globeop_reports as go\n",
+ "import pandas as pd\n",
+ "import analytics\n",
+ "import numpy as np\n",
+ "\n",
+ "from analytics.index_data import get_index_quotes\n",
+ "from analytics.scenarios import run_portfolio_scenarios\n",
+ "from analytics import BlackSwaption, CreditIndex, BlackSwaptionVolSurface, Portfolio,DualCorrTranche\n",
+ "\n",
+ "from utils.db import dbconn, dbengine\n",
+ "\n",
+ "from risk.tranches import get_tranche_portfolio\n",
+ "from risk.swaptions import get_swaption_portfolio\n",
+ "from risk.bonds import subprime_risk, clo_risk, crt_risk\n",
+ "\n",
+ "dawn_engine = dbengine('dawndb')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "################################### Average Portfolio Sales Turnover - as of last monthend from today\n",
+ "#Actually: Rolling months sum of (total bond sales proceeds + paydown)/monthly NAV\n",
+ "fund='BRINKER'\n",
+ "sql_string = \"SELECT * FROM bonds WHERE buysell IS False and fund = %s order by trade_date desc\"\n",
+ "df = pd.read_sql_query(sql_string, dawn_engine,\n",
+ " parse_dates={'lastupdate':{'utc':True}, 'trade_date': {}, 'settle_date':{}},\n",
+ " params=[fund,],\n",
+ " index_col = 'trade_date')\n",
+ "df = df.groupby(pd.Grouper(freq='M')).sum()\n",
+ "\n",
+ "brinker_nav = pd.read_csv(\n",
+ " \"/home/serenitas/edwin/Python/brinker_nav.csv\",\n",
+ " parse_dates=[\"date\"],\n",
+ " index_col=[\"date\"])\n",
+ "\n",
+ "start_date = datetime.date(2019,3,18)\n",
+ "end_date = datetime.date.today()\n",
+ "cf = pd.read_sql_query(\"SELECT * FROM cashflow_history where date > %s and date <= %s\", dawn_engine,\n",
+ " params=[start_date, end_date],\n",
+ " parse_dates=['date'],\n",
+ " index_col=['date']).sort_index()\n",
+ "sql_string = \"SELECT description, identifier, notional, price, factor FROM risk_positions(%s, %s, 'BRINKER')\"\n",
+ "pos = {}\n",
+ "for d in cf.index.unique():\n",
+ " for ac in ['Subprime', 'CRT']:\n",
+ " pos[d, ac] = pd.read_sql_query(sql_string, dawn_engine, params=[d.date(), ac])\n",
+ "pos = pd.concat(pos, names=['date', 'asset_class'])\n",
+ "pos = pos.reset_index(level=[1,2])\n",
+ "\n",
+ "cf_1 = pd.merge_asof(cf, pos.sort_index(), left_index=True, right_index=True, by='identifier')\n",
+ "cf_1 = cf_1.dropna(subset=['notional'])\n",
+ "cf_1 = cf_1[(cf_1.principal_bal != 0) & (cf_1.principal != 0)]\n",
+ "cf_1['paydown'] = cf_1.apply(lambda df: df.notional * df.factor/df.principal_bal * df.principal, axis=1)\n",
+ "paydowns = cf_1.paydown.groupby(pd.Grouper(freq='M')).sum()\n",
+ "turnover = pd.concat([paydowns, df.principal_payment, df.accrued_payment], axis=1).fillna(0)\n",
+ "brinker_nav = brinker_nav.groupby(pd.Grouper(freq='M')).last()\n",
+ "turnover = (turnover.sum(axis=1)/brinker_nav.nav).rolling(min(13, len(turnover))-1).sum()"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.3"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 4
+}