diff options
Diffstat (limited to 'python/notebooks')
| -rw-r--r-- | python/notebooks/brinker_reports.ipynb | 96 |
1 files changed, 96 insertions, 0 deletions
diff --git a/python/notebooks/brinker_reports.ipynb b/python/notebooks/brinker_reports.ipynb new file mode 100644 index 00000000..9ea8f5ef --- /dev/null +++ b/python/notebooks/brinker_reports.ipynb @@ -0,0 +1,96 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import datetime\n", + "from pandas.tseries.offsets import BDay, MonthEnd\n", + "import globeop_reports as go\n", + "import pandas as pd\n", + "import analytics\n", + "import numpy as np\n", + "\n", + "from analytics.index_data import get_index_quotes\n", + "from analytics.scenarios import run_portfolio_scenarios\n", + "from analytics import BlackSwaption, CreditIndex, BlackSwaptionVolSurface, Portfolio,DualCorrTranche\n", + "\n", + "from utils.db import dbconn, dbengine\n", + "\n", + "from risk.tranches import get_tranche_portfolio\n", + "from risk.swaptions import get_swaption_portfolio\n", + "from risk.bonds import subprime_risk, clo_risk, crt_risk\n", + "\n", + "dawn_engine = dbengine('dawndb')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "################################### Average Portfolio Sales Turnover - as of last monthend from today\n", + "#Actually: Rolling months sum of (total bond sales proceeds + paydown)/monthly NAV\n", + "fund='BRINKER'\n", + "sql_string = \"SELECT * FROM bonds WHERE buysell IS False and fund = %s order by trade_date desc\"\n", + "df = pd.read_sql_query(sql_string, dawn_engine,\n", + " parse_dates={'lastupdate':{'utc':True}, 'trade_date': {}, 'settle_date':{}},\n", + " params=[fund,],\n", + " index_col = 'trade_date')\n", + "df = df.groupby(pd.Grouper(freq='M')).sum()\n", + "\n", + "brinker_nav = pd.read_csv(\n", + " \"/home/serenitas/edwin/Python/brinker_nav.csv\",\n", + " parse_dates=[\"date\"],\n", + " index_col=[\"date\"])\n", + "\n", + "start_date = datetime.date(2019,3,18)\n", + "end_date = datetime.date.today()\n", + "cf = pd.read_sql_query(\"SELECT * FROM cashflow_history where date > %s and date <= %s\", dawn_engine,\n", + " params=[start_date, end_date],\n", + " parse_dates=['date'],\n", + " index_col=['date']).sort_index()\n", + "sql_string = \"SELECT description, identifier, notional, price, factor FROM risk_positions(%s, %s, 'BRINKER')\"\n", + "pos = {}\n", + "for d in cf.index.unique():\n", + " for ac in ['Subprime', 'CRT']:\n", + " pos[d, ac] = pd.read_sql_query(sql_string, dawn_engine, params=[d.date(), ac])\n", + "pos = pd.concat(pos, names=['date', 'asset_class'])\n", + "pos = pos.reset_index(level=[1,2])\n", + "\n", + "cf_1 = pd.merge_asof(cf, pos.sort_index(), left_index=True, right_index=True, by='identifier')\n", + "cf_1 = cf_1.dropna(subset=['notional'])\n", + "cf_1 = cf_1[(cf_1.principal_bal != 0) & (cf_1.principal != 0)]\n", + "cf_1['paydown'] = cf_1.apply(lambda df: df.notional * df.factor/df.principal_bal * df.principal, axis=1)\n", + "paydowns = cf_1.paydown.groupby(pd.Grouper(freq='M')).sum()\n", + "turnover = pd.concat([paydowns, df.principal_payment, df.accrued_payment], axis=1).fillna(0)\n", + "brinker_nav = brinker_nav.groupby(pd.Grouper(freq='M')).last()\n", + "turnover = (turnover.sum(axis=1)/brinker_nav.nav).rolling(min(13, len(turnover))-1).sum()" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.3" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} |
