aboutsummaryrefslogtreecommitdiffstats
path: root/python/notebooks/risk_sabo.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'python/notebooks/risk_sabo.ipynb')
-rw-r--r--python/notebooks/risk_sabo.ipynb129
1 files changed, 129 insertions, 0 deletions
diff --git a/python/notebooks/risk_sabo.ipynb b/python/notebooks/risk_sabo.ipynb
new file mode 100644
index 00000000..dd2cb9f1
--- /dev/null
+++ b/python/notebooks/risk_sabo.ipynb
@@ -0,0 +1,129 @@
+{
+ "cells": [
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import datetime\n",
+ "import globeop_reports as go\n",
+ "import pandas as pd\n",
+ "import analytics\n",
+ "import numpy as np\n",
+ "\n",
+ "from pandas.tseries.offsets import BDay, MonthEnd\n",
+ "from analytics.scenarios import run_portfolio_scenarios\n",
+ "from utils.db import dbconn\n",
+ "from risk.portfolio import build_portfolio, generate_vol_surface\n",
+ "from analytics.basket_index import BasketIndex"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "#Set dates\n",
+ "position_date = (datetime.date.today() - MonthEnd(1)).date()\n",
+ "spread_date = position_date\n",
+ "analytics._local = False\n",
+ "analytics.init_ontr(spread_date)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "################################### Run Credit Spread scenarios\n",
+ "spread_shock = np.array([-100., -25., 1., +25. , 100.])\n",
+ "spread_shock /= analytics._ontr['HY'].spread\n",
+ "portf, _ = build_portfolio(position_date, spread_date)\n",
+ "vol_surface = generate_vol_surface(portf, 5)\n",
+ "portf.reset_pv()\n",
+ "scens = run_portfolio_scenarios(portf, date_range=[pd.Timestamp(spread_date)], params=['pnl'],\n",
+ " spread_shock=spread_shock,\n",
+ " vol_shock=[0.0],\n",
+ " corr_shock=[0.0],\n",
+ " vol_surface=vol_surface)\n",
+ "\n",
+ "pnl = scens.xs('pnl', axis=1, level=2)\n",
+ "pnl = pnl.xs((0.0, 0.0), level=['vol_shock', 'corr_shock'])\n",
+ "\n",
+ "scenarios = (pnl.\n",
+ " reset_index(level=['date'], drop=True).\n",
+ " groupby(level=0, axis=1).sum())\n",
+ "\n",
+ "options = ['HYOPTDEL', 'HYPAYER', 'HYREC', 'IGOPTDEL', 'IGPAYER', 'IGREC']\n",
+ "tranches = ['HYMEZ', 'HYINX', 'HYEQY', 'IGMEZ', 'IGINX', 'IGEQY', 'IGSNR', 'IGINX', 'BSPK', 'XOMEZ', 'XOINX', 'EUMEZ']\n",
+ "hedges = ['HEDGE_CLO', 'HEDGE_MAC', 'HEDGE_MBS']\n",
+ "\n",
+ "synthetic =pd.DataFrame()\n",
+ "synthetic['options'] = scenarios[set(scenarios.columns).intersection(options)].sum(axis=1)\n",
+ "synthetic['tranches'] = scenarios[set(scenarios.columns).intersection(tranches)].sum(axis=1)\n",
+ "synthetic['curve_trades'] = scenarios['curve_trades']\n",
+ "synthetic['total'] = synthetic.sum(axis = 1)\n",
+ "nav = go.get_net_navs()\n",
+ "scenarios.sum(axis=1)\n",
+ "scenarios.sum(axis=1).to_clipboard()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "################################### JTD\n",
+ "_, portf = build_portfolio(position_date, spread_date)\n",
+ "jtd_i = []\n",
+ "for t in portf.indices:\n",
+ " bkt = BasketIndex(t.index_type, t.series, [t.tenor])\n",
+ " spreads = pd.DataFrame(bkt.spreads() * 10000, index=pd.Index(bkt.tickers, name='ticker'), columns=['spread'])\n",
+ " jump = pd.merge(spreads, bkt.jump_to_default() * t.notional, left_index=True, right_index=True)\n",
+ " jtd_i.append(jump.rename(columns={jump.columns[1]: 'jtd'}))\n",
+ "jtd_t = []\n",
+ "for t in portf.tranches:\n",
+ " jump = pd.concat([t.singlename_spreads().reset_index(['seniority', 'doc_clause'], drop=True), t.jump_to_default().rename('jtd')], axis=1)\n",
+ " jtd_t.append(jump.drop(['weight', 'recovery'], axis=1))\n",
+ "\n",
+ "ref_names = pd.read_sql_query(\"select ticker, referenceentity from refentity\", dbconn('serenitasdb'), index_col='ticker')\n",
+ "jump = pd.concat([pd.concat(jtd_t), pd.concat(jtd_i)])\n",
+ "jump = jump.merge(ref_names, left_index=True, right_index=True)\n",
+ "jump = jump.groupby('referenceentity').agg({'spread': np.mean, 'jtd': np.sum}).sort_values(by='jtd', ascending=True)\n",
+ "jump.to_clipboard()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3.8.1 64-bit",
+ "language": "python",
+ "name": "python38164bitc40c8740e5d542d7959acb14be96f4f3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.8.5"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 4
+}