aboutsummaryrefslogtreecommitdiffstats
path: root/python/notebooks/risk_sabo.ipynb
blob: dd2cb9f10ef887d641f5cfc432cb54f3ad3bdacd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import datetime\n",
    "import globeop_reports as go\n",
    "import pandas as pd\n",
    "import analytics\n",
    "import numpy as np\n",
    "\n",
    "from pandas.tseries.offsets import BDay, MonthEnd\n",
    "from analytics.scenarios import run_portfolio_scenarios\n",
    "from utils.db import dbconn\n",
    "from risk.portfolio import build_portfolio, generate_vol_surface\n",
    "from analytics.basket_index import BasketIndex"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "#Set dates\n",
    "position_date = (datetime.date.today() - MonthEnd(1)).date()\n",
    "spread_date = position_date\n",
    "analytics._local = False\n",
    "analytics.init_ontr(spread_date)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "################################### Run Credit Spread scenarios\n",
    "spread_shock = np.array([-100., -25., 1., +25. , 100.])\n",
    "spread_shock /= analytics._ontr['HY'].spread\n",
    "portf, _ = build_portfolio(position_date, spread_date)\n",
    "vol_surface = generate_vol_surface(portf, 5)\n",
    "portf.reset_pv()\n",
    "scens = run_portfolio_scenarios(portf, date_range=[pd.Timestamp(spread_date)], params=['pnl'],\n",
    "                                spread_shock=spread_shock,\n",
    "                                vol_shock=[0.0],\n",
    "                                corr_shock=[0.0],\n",
    "                                vol_surface=vol_surface)\n",
    "\n",
    "pnl = scens.xs('pnl', axis=1, level=2)\n",
    "pnl = pnl.xs((0.0, 0.0), level=['vol_shock', 'corr_shock'])\n",
    "\n",
    "scenarios = (pnl.\n",
    "          reset_index(level=['date'], drop=True).\n",
    "          groupby(level=0, axis=1).sum())\n",
    "\n",
    "options = ['HYOPTDEL', 'HYPAYER', 'HYREC', 'IGOPTDEL', 'IGPAYER', 'IGREC']\n",
    "tranches = ['HYMEZ', 'HYINX', 'HYEQY', 'IGMEZ', 'IGINX', 'IGEQY', 'IGSNR', 'IGINX', 'BSPK', 'XOMEZ', 'XOINX', 'EUMEZ']\n",
    "hedges = ['HEDGE_CLO', 'HEDGE_MAC', 'HEDGE_MBS']\n",
    "\n",
    "synthetic =pd.DataFrame()\n",
    "synthetic['options'] = scenarios[set(scenarios.columns).intersection(options)].sum(axis=1)\n",
    "synthetic['tranches'] = scenarios[set(scenarios.columns).intersection(tranches)].sum(axis=1)\n",
    "synthetic['curve_trades'] = scenarios['curve_trades']\n",
    "synthetic['total'] = synthetic.sum(axis = 1)\n",
    "nav = go.get_net_navs()\n",
    "scenarios.sum(axis=1)\n",
    "scenarios.sum(axis=1).to_clipboard()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "################################### JTD\n",
    "_, portf = build_portfolio(position_date, spread_date)\n",
    "jtd_i = []\n",
    "for t in portf.indices:\n",
    "    bkt = BasketIndex(t.index_type, t.series, [t.tenor])\n",
    "    spreads = pd.DataFrame(bkt.spreads() * 10000, index=pd.Index(bkt.tickers, name='ticker'), columns=['spread'])\n",
    "    jump = pd.merge(spreads, bkt.jump_to_default() * t.notional, left_index=True, right_index=True)\n",
    "    jtd_i.append(jump.rename(columns={jump.columns[1]: 'jtd'}))\n",
    "jtd_t = []\n",
    "for t in portf.tranches:\n",
    "    jump = pd.concat([t.singlename_spreads().reset_index(['seniority', 'doc_clause'], drop=True), t.jump_to_default().rename('jtd')], axis=1)\n",
    "    jtd_t.append(jump.drop(['weight', 'recovery'], axis=1))\n",
    "\n",
    "ref_names = pd.read_sql_query(\"select ticker, referenceentity from refentity\", dbconn('serenitasdb'), index_col='ticker')\n",
    "jump = pd.concat([pd.concat(jtd_t), pd.concat(jtd_i)])\n",
    "jump = jump.merge(ref_names, left_index=True, right_index=True)\n",
    "jump = jump.groupby('referenceentity').agg({'spread': np.mean, 'jtd': np.sum}).sort_values(by='jtd', ascending=True)\n",
    "jump.to_clipboard()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3.8.1 64-bit",
   "language": "python",
   "name": "python38164bitc40c8740e5d542d7959acb14be96f4f3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.8.5"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 4
}