aboutsummaryrefslogtreecommitdiffstats
path: root/python/optim_alloc.py
diff options
context:
space:
mode:
Diffstat (limited to 'python/optim_alloc.py')
-rw-r--r--python/optim_alloc.py68
1 files changed, 68 insertions, 0 deletions
diff --git a/python/optim_alloc.py b/python/optim_alloc.py
new file mode 100644
index 00000000..eb663dd2
--- /dev/null
+++ b/python/optim_alloc.py
@@ -0,0 +1,68 @@
+import cvxpy
+import numpy as np
+import math
+
+def cor2cov(Rho, vol):
+ return np.diag(vol) @ Rho @ np.diag(vol)
+
+def rho(sigma, delta, volF):
+ """ computes the correlation between the asset and the factor """
+ return 1/math.sqrt(1+sigma**2/(delta**2*volF**2))
+
+def resid_vol(rho, delta, volF):
+ """ computes the residual of the asset """
+ return math.sqrt(delta**2*volF**2*(1/rho**2-1))
+
+def var(rho, delta, volF):
+ """ computes the variance of the asset """
+ return delta**2*volF**2+resid_vol(rho, delta, volF)**2
+
+volHY = 0.4
+rho = {'CLO': 0.9,
+ 'CSO': 0.6,
+ 'Subprime': 0.4}
+delta = {'CLO': 1.5,
+ 'CSO': 0.4,
+ 'Subprime': 1}
+
+u = volHY * np.array([delta['CLO'], delta['CSO'], delta['Subprime']])
+Sigma = np.outer(u, u) + np.diag([resid_vol(rho[a], delta[a], volHY)**2
+ for a in ['CLO', 'CSO', 'Subprime']])
+v = volHY**2 * np.array([1, delta['CLO'], delta['CSO'], delta['Subprime']])
+Sigma = np.vstack((v, np.c_[v[1:], Sigma]))
+
+mu = np.array([0.03, 0.07, 0.04, 0.15])
+sharpe = mu/np.sqrt(np.diag(Sigma))
+
+gamma = cvxpy.Parameter(sign='positive')
+w = cvxpy.Variable(4)
+ret = mu.T*w
+risk = cvxpy.quad_form(w, Sigma)
+prob = cvxpy.Problem(cvxpy.Maximize(ret-gamma*risk),
+ [cvxpy.sum_entries(w[1:]) - 0.1*w[0] == 1,
+ w[1:] >= 0,
+ w[0] <= 0])
+
+W = np.empty((4, 100))
+gamma_x = np.linspace(0, 1, 100)
+for i, val in enumerate(gamma_x):
+ gamma.value = val
+ prob.solve()
+ W[:,i] = np.asarray(w.value).squeeze()
+
+fund_return = mu@X
+fund_vol= np.array([math.sqrt(X[:,i]@Sigma@X[:,i]) for i in range(100)])
+
+from matplotlib import pyplot as plt
+plt.style.use('ggplot')
+fig, ax1 = plt.subplots()
+ax1.stackplot(gamma_x, W[1:,])
+ax1.set_xlabel('risk factor')
+ax1.set_ylabel('portfolio weights')
+ax1.text(0.3, 0.82, 'RMBS')
+ax1.text(0.5, 0.45, 'CSO')
+ax1.text(0.5, 0.15, 'CLO')
+ax2 = ax1.twinx()
+ax2.plot(gamma_x, fund_vol, lw=1)
+ax2.set_ylabel('fund volatility')
+plt.show()