diff options
Diffstat (limited to 'python')
| -rw-r--r-- | python/optim_alloc.py | 68 |
1 files changed, 68 insertions, 0 deletions
diff --git a/python/optim_alloc.py b/python/optim_alloc.py new file mode 100644 index 00000000..eb663dd2 --- /dev/null +++ b/python/optim_alloc.py @@ -0,0 +1,68 @@ +import cvxpy +import numpy as np +import math + +def cor2cov(Rho, vol): + return np.diag(vol) @ Rho @ np.diag(vol) + +def rho(sigma, delta, volF): + """ computes the correlation between the asset and the factor """ + return 1/math.sqrt(1+sigma**2/(delta**2*volF**2)) + +def resid_vol(rho, delta, volF): + """ computes the residual of the asset """ + return math.sqrt(delta**2*volF**2*(1/rho**2-1)) + +def var(rho, delta, volF): + """ computes the variance of the asset """ + return delta**2*volF**2+resid_vol(rho, delta, volF)**2 + +volHY = 0.4 +rho = {'CLO': 0.9, + 'CSO': 0.6, + 'Subprime': 0.4} +delta = {'CLO': 1.5, + 'CSO': 0.4, + 'Subprime': 1} + +u = volHY * np.array([delta['CLO'], delta['CSO'], delta['Subprime']]) +Sigma = np.outer(u, u) + np.diag([resid_vol(rho[a], delta[a], volHY)**2 + for a in ['CLO', 'CSO', 'Subprime']]) +v = volHY**2 * np.array([1, delta['CLO'], delta['CSO'], delta['Subprime']]) +Sigma = np.vstack((v, np.c_[v[1:], Sigma])) + +mu = np.array([0.03, 0.07, 0.04, 0.15]) +sharpe = mu/np.sqrt(np.diag(Sigma)) + +gamma = cvxpy.Parameter(sign='positive') +w = cvxpy.Variable(4) +ret = mu.T*w +risk = cvxpy.quad_form(w, Sigma) +prob = cvxpy.Problem(cvxpy.Maximize(ret-gamma*risk), + [cvxpy.sum_entries(w[1:]) - 0.1*w[0] == 1, + w[1:] >= 0, + w[0] <= 0]) + +W = np.empty((4, 100)) +gamma_x = np.linspace(0, 1, 100) +for i, val in enumerate(gamma_x): + gamma.value = val + prob.solve() + W[:,i] = np.asarray(w.value).squeeze() + +fund_return = mu@X +fund_vol= np.array([math.sqrt(X[:,i]@Sigma@X[:,i]) for i in range(100)]) + +from matplotlib import pyplot as plt +plt.style.use('ggplot') +fig, ax1 = plt.subplots() +ax1.stackplot(gamma_x, W[1:,]) +ax1.set_xlabel('risk factor') +ax1.set_ylabel('portfolio weights') +ax1.text(0.3, 0.82, 'RMBS') +ax1.text(0.5, 0.45, 'CSO') +ax1.text(0.5, 0.15, 'CLO') +ax2 = ax1.twinx() +ax2.plot(gamma_x, fund_vol, lw=1) +ax2.set_ylabel('fund volatility') +plt.show() |
