aboutsummaryrefslogtreecommitdiffstats
path: root/R/intex_deals_functions.R
blob: a85b9f2448020eea95b5e68acb37a10eb81578ed (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
library(RQuantLib)
library(statmod)
root = "//WDSENTINEL/share/CorpCDOs/"
source(file.path(root, "R", "yieldCurve.R"))
source(file.path(root, "R", "cds_functions_generic.R"))
source(file.path(root, "R", "etdb.R"))
source(file.path(root, "R", "tranche_functions.R"))
load(file.path(root, "R", "bloomberg_data.RData"))

cdorating <- function(cusip){
    return( sub("[0-9]","", dataMtge[dataMtge$CUSIP %in% cusip,]$RTG_MDY_INITIAL ))
}

getcollateral <- function(dealname, date=Sys.Date()){
    sqlstring <- sprintf("select * from et_aggdealinfo_historical('%s', '%s')", dealname, date)
    collatdata <- dbGetQuery(dbCon, sqlstring)
    return(collatdata)
}

getdealdata <- function(dealnames){
    sqlstring <- sprintf("select * from latest_clo_universe where dealname in ('%s')",
                         paste(dealnames, collapse="','"))
    return( dbGetQuery(dbCon, sqlstring) )
}

recovery <- function(collateral) {
    ## return assumed recovery based on assumptions from recovery.assumptions
    if(!is.na(collateral$secondlien) && collateral$secondlien){
        collateral$assettype <- "SecondLien"
    }
    recovery <- with(global.params,
                     as.numeric(recovery.assumptions[collateral$assettype]))
    if( !is.na(collateral$covlite) && collateral$covlite) {
        recovery <- recovery - global.params$recovery.assumptions$Adj_Covlite
    }
    if( !is.na(collateral$iscdo) && collateral$iscdo ){
        recovery <- 0
    }
    ## price is too low need to lower the assumed recovery
    if(!is.na(collateral$price) && recovery > collateral$price/100 - 0.1){
        recovery <- max(collateral$price/100-0.2, 0)
    }
    return(recovery)
}

dealnamefromcusip <- function(cusips){
    ## wrapper around the sql procedure, not the fastest probably
    r <- NULL
    for(i in 1:length(cusips)){
        sqlstr <- sprintf("select * from dealname_from_cusip('%s')", cusips[i])
        r <- c(r, as.character(dbGetQuery(dbCon, sqlstr)))
    }
    return( r )
}

cusipsfromdealnames <- function(dealnames){
    unlist(strsplit(getdealdata(dealnames)$"Deal Cusip List", ","))
}

fithazardrate.fast <- function(collateral, eps=1e-6){
    lambda <- 0.05
    cs <- couponSchedule(collateral$nextpaydate, collateral$maturity,
                         collateral$frequency, collateral$fixedorfloat,
                         collateral$grosscoupon * 0.01, collateral$spread*0.01)
    R <- recovery(collateral)
    while(abs(bondprice(lambda, cs, R) * 100 - collateral$price) > eps){
        lambda <- lambda - (bondprice(lambda, cs, R) - 0.01*collateral$price)/dbondprice(lambda, cs, R)
    }
    return( lambda )
}

vanillabondprice <- function(h, collateral, prepay=TRUE) {
    R <- recovery(collateral)
    cs <- couponSchedule(collateral$nextpaydate, collateral$maturity,
                         collateral$frequency, collateral$fixedorfloat,
                         collateral$grosscoupon*0.01, collateral$spread*0.01)
    if(prepay){
        dpc <- new("defaultprepaycurve", dates=cs$dates, hazardrates=rep(h,length(cs$dates)),
                   prepayrates=rep(k(h), length(cs$dates)))
    }else{
        dpc <- new("defaultprepaycurve", dates=cs$dates, hazardrates=rep(h,length(cs$dates)),
                   prepayrates=numeric(0))
    }
    return( bondprice(cs, dpc, R) )
}

dvanillabondprice <- function(hazardrate, collateral) {
    R <- recovery(collateral)
    cs <- couponSchedule(collateral$nextpaydate, collateral$maturity,
                         collateral$frequency, collateral$fixedorfloat,
                         collateral$grosscoupon*0.01, collateral$spread*0.01)
    return( bondprice(hazardrate, cs, R) )
}

fithazardrate <- function(collateral){
    R <- recovery(collateral)
    cs <- couponSchedule(collateral$nextpaydate, collateral$maturity,
                         collateral$frequency, collateral$fixedorfloat,
                         collateral$grosscoupon*0.01, collateral$spread*0.01)
    f <- function(lambda){
        u <- bondprice(lambda, cs, R )
        return( (u * 100-collateral$price)^2 )
    }
    return( optimize(f, c(0,1), tol=1e-6)$minimum )
}


maturity <- function(creditcurve){
    if(class(creditcurve)=="creditcurve"){
        dates <- creditcurve@curve@dates
        if(length(dates)){
            return( dates[length(dates)] )
        }else{
            return( creditcurve@startdate )
        }
    }else{
        stop("not of class creditcurve")
    }
}

stackcurve <- function(SC, line.item, global.params, startdate){
    newdates <- seq(startdate, line.item$maturity, by="3 months")
    if(line.item$assettype=="Loan"){
        hvec <- global.params$shape(yearFrac(today(), newdates[-1])) * global.params$defaultloanhazardrate
        kvec <- global.params$alpha * exp(-global.params$beta * hvec)
    }else if(line.item$assettype=="Bond" || line.item$iscdo){
        hvec <- global.params$shape(yearFrac(today(), newdates[-1])) * global.params$defaultbondhazardrate
        kvec <- rep(0, length(hvec))
    }
    SC@curve@hazardrates <- c(SC@curve@hazardrates, hvec)
    SC@curve@prepayrates <- c(SC@curve@prepayrates, kvec)
    SC@curve@dates <- c(SC@curve@dates, newdates[-1])
    return(SC)
}

buildSC.matured <- function(SC, line.item, reinvdate, dealmaturity, global.params, startdate){
    if(startdate<=reinvdate){ #reinvest
        line.item$maturity <- min(dealmaturity, startdate + global.params$rollingmaturity)
        SC <- stackcurve(SC, line.item, global.params, startdate)
    }else{ #no reinvestment
        SC@curve@dates <- startdate
        SC@curve@hazardrates <- 0
        SC@curveprepayrates <- 0
    }
    return( SC )
}

buildSC <- function(line.item, reinvdate, dealmaturity, global.params, startdate){
    ## cat(line.item$issuername, "\n")
    if(!is.na(line.item$iscdo) && line.item$iscdo && is.na(line.item$price)){
        ##we have prices for some cdos e.g. 210795PS3
        orig.moody <- cdorating(line.item$cusip)
        if(length(orig.moody)==0){
            orig.moody <- "NR"
        }
        line.item$price <- as.numeric(global.params$cdoprices[orig.moody])
    }
    ##build survival curve
    SC <- new("creditcurve", recovery=recovery(line.item), startdate=startdate,
              issuer=line.item$issuername)
    SC@curve <- new("defaultprepaycurve", dates=as.Date(character(0)))
    ## defaulted asset
    if(!is.na(line.item$defaultedflag) && line.item$defaultedflag){
        if(!is.na(line.item$price)){
            line.item$currentbalance <- line.item$currentbalance * line.item$price/100
        }else{
            line.item$currentbalance <- line.item$currentbalance * recovery(line.item)
        }
        SC@startdate <- startdate + global.params$defaultedlag
        line.item$maturity <- min(dealmaturity, SC@startdate + global.params$rollingmaturity)
        ## automatic reinvest
        SC<- stackcurve(SC, line.item, global.params, SC@startdate)
    }else if(line.item$maturity<=startdate){#matured asset
        SC <- buildSC.matured(SC, line.item, reinvdate, dealmaturity, global.params, startdate)
    }else if(is.na(line.item$price)){ #missing price
        SC <- stackcurve(SC, line.item, global.params, SC@startdate)
    }else{ #normal case
        if(line.item$assettype=="Bond"){ #no prepay rate
            alpha <- 0
        }else{
            alpha <- global.params$alpha
        }
        try <- bondhazardrate.shaped(line.item, global.params$shape,
                                     recovery(line.item), alpha)
        if(is.null(try)){
            SC <- stackcurve(SC, line.item, global.params, SC@startdate)
        }else{
            SC@curve <- try
        }
    }
    if(maturity(SC) <= reinvdate){ #we reinvest
        newstartdate <- line.item$maturity
        line.item$maturity <- min(dealmaturity, newstartdate + global.params$rollingmaturity)
        SC <- stackcurve(SC, line.item, global.params, newstartdate)
    }
    return( list(SC=SC, notional=line.item$currentbalance) )
}

buildSC.portfolio <- function(dealname, global.params, startdate=today()) {
    dealdata <- getdealdata(dealname)
    collatdata <- getcollateral(dealname)
    notionalvec <- c()
    SCvec <- c()
    betavec <- c()
    for(i in 1:nrow(collatdata)){
        line.item <- collatdata[i,]
        if( is.na(line.item$maturity) ){
            stop("empty maturity")
        }
        ##most likely equity, doesn't impact the risk anyway
        if(line.item$currentbalance < 1){
            next
        }
        temp <- buildSC(line.item, dealdata$"Reinv End Date", dealdata$maturity, global.params, startdate)
        notionalvec <- c(notionalvec, temp$notional)
        SCvec <- c(SCvec, temp$SC)
        betavec <- c(betavec, if(!is.na(line.item$iscdo) && line.item$iscdo) 1 else
                     global.params$defaultcorr)
    }
    return( list(notional=notionalvec, SC=SCvec, beta=betavec) )
}

cdrfromscenarios <- function(scenarios, dates){
    ## compute the forward cdr rates to pass to intex
    ## so that we match the default curves in scenarios
    cdr <- matrix(0, nrow(scenarios), ncol(scenarios))
    for(i in 1:nrow(scenarios)){
        cdr[i,] <- 100*(1-exp(diff(c(0, log(1-scenarios[i,])))))/diff(c(0, yearFrac(today(), dates)))
    }
    return( cdr )
}

recoveryfromscenarios <- function(scenariosd, scenariosr){
    ## compute the forward recovery rate based on the term
    ## structure of recovery scenarios
    ## we run into trouble for very stressed scenarios
    ## this code should cap the scenarios at 0 it this happens
    intexrecov <- matrix(0, n.scenarios, ncol(scenariosr))
    for(i in 1:n.scenarios){
        current <- 1
        intexrecov[i,1] <- scenariosr[i,1]
        for(t in 2:ncol(scenariosr)){
            w <- scenariosd[i,current]/scenariosd[i,t]
            if(scenariosr[i,t]-w*scenariosr[i,current]>=0){
                intexrecov[i,t] <- (scenariosr[i,t]-w*scenariosr[i,current])/(1-w)
                current <- current+1
            }else{
                intexrecov[i,t] <- 0
            }
        }
    }
    return(intexrecov)
}