1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
|
library(RQuantLib)
library(statmod)
root = "//WDSENTINEL/share/CorpCDOs/"
source(file.path(root, "R", "yieldCurve.R"))
source(file.path(root, "R", "cds_functions_generic.R"))
source(file.path(root, "R", "etdb.R"))
source(file.path(root, "R", "tranche_functions.R"))
load(file.path(root, "R", "bloomberg_data.RData"))
cdorating <- function(cusip){
return( sub("[0-9]","", dataMtge[dataMtge$CUSIP %in% cusip,]$RTG_MDY_INITIAL ))
}
getcollateral <- function(dealname, date=Sys.Date()){
sqlstring <- sprintf("select * from et_aggdealinfo_historical('%s', '%s')", dealname, date)
collatdata <- dbGetQuery(dbCon, sqlstring)
return(collatdata)
}
getdealdata <- function(dealnames){
sqlstring <- sprintf("select * from latest_clo_universe where dealname in ('%s')",
paste(dealnames, collapse="','"))
return( dbGetQuery(dbCon, sqlstring) )
}
recovery <- function(collateral) {
## return assumed recovery based on assumptions from recovery.assumptions
if(!is.na(collateral$secondlien) && collateral$secondlien){
collateral$assettype <- "SecondLien"
}
recovery <- with(global.params,
as.numeric(recovery.assumptions[collateral$assettype]))
if( !is.na(collateral$covlite) && collateral$covlite) {
recovery <- recovery - global.params$recovery.assumptions$Adj_Covlite
}
if( !is.na(collateral$iscdo) && collateral$iscdo ){
recovery <- 0
}
## price is too low need to lower the assumed recovery
if(!is.na(collateral$price) && recovery > collateral$price/100 - 0.1){
recovery <- max(collateral$price/100-0.2, 0)
}
return(recovery)
}
dealnamefromcusip <- function(cusips){
## wrapper around the sql procedure, not the fastest probably
r <- NULL
for(i in 1:length(cusips)){
sqlstr <- sprintf("select * from dealname_from_cusip('%s')", cusips[i])
r <- c(r, as.character(dbGetQuery(dbCon, sqlstr)))
}
return( r )
}
cusipsfromdealnames <- function(dealnames){
unlist(strsplit(getdealdata(dealnames)$"Deal Cusip List", ","))
}
fithazardrate.fast <- function(collateral, eps=1e-6){
lambda <- 0.05
cs <- couponSchedule(collateral$nextpaydate, collateral$maturity,
collateral$frequency, collateral$fixedorfloat,
collateral$grosscoupon * 0.01, collateral$spread*0.01)
R <- recovery(collateral)
while(abs(bondprice(lambda, cs, R) * 100 - collateral$price) > eps){
lambda <- lambda - (bondprice(lambda, cs, R) - 0.01*collateral$price)/dbondprice(lambda, cs, R)
}
return( lambda )
}
vanillabondprice <- function(h, collateral, prepay=TRUE) {
R <- recovery(collateral)
cs <- couponSchedule(collateral$nextpaydate, collateral$maturity,
collateral$frequency, collateral$fixedorfloat,
collateral$grosscoupon*0.01, collateral$spread*0.01)
if(prepay){
dpc <- new("defaultprepaycurve", dates=cs$dates, hazardrates=rep(h,length(cs$dates)),
prepayrates=rep(k(h), length(cs$dates)))
}else{
dpc <- new("defaultprepaycurve", dates=cs$dates, hazardrates=rep(h,length(cs$dates)),
prepayrates=numeric(0))
}
return( bondprice(cs, dpc, R) )
}
dvanillabondprice <- function(hazardrate, collateral) {
R <- recovery(collateral)
cs <- couponSchedule(collateral$nextpaydate, collateral$maturity,
collateral$frequency, collateral$fixedorfloat,
collateral$grosscoupon*0.01, collateral$spread*0.01)
return( bondprice(hazardrate, cs, R) )
}
fithazardrate <- function(collateral){
R <- recovery(collateral)
cs <- couponSchedule(collateral$nextpaydate, collateral$maturity,
collateral$frequency, collateral$fixedorfloat,
collateral$grosscoupon*0.01, collateral$spread*0.01)
f <- function(lambda){
u <- bondprice(lambda, cs, R )
return( (u * 100-collateral$price)^2 )
}
return( optimize(f, c(0,1), tol=1e-6)$minimum )
}
maturity <- function(creditcurve){
if(class(creditcurve)=="creditcurve"){
dates <- creditcurve@curve@dates
if(length(dates)){
return( dates[length(dates)] )
}else{
return( creditcurve@startdate )
}
}else{
stop("not of class creditcurve")
}
}
stackcurve <- function(SC, line.item, global.params, startdate){
newdates <- seq(startdate, line.item$maturity, by="3 months")
if(line.item$assettype=="Loan"){
hvec <- global.params$shape(yearFrac(today(), newdates[-1])) * global.params$defaultloanhazardrate
kvec <- global.params$alpha * exp(-global.params$beta * hvec)
}else if(line.item$assettype=="Bond" || line.item$iscdo){
hvec <- global.params$shape(yearFrac(today(), newdates[-1])) * global.params$defaultbondhazardrate
kvec <- rep(0, length(hvec))
}
SC@curve@hazardrates <- c(SC@curve@hazardrates, hvec)
SC@curve@prepayrates <- c(SC@curve@prepayrates, kvec)
SC@curve@dates <- c(SC@curve@dates, newdates[-1])
return(SC)
}
buildSC.matured <- function(SC, line.item, reinvdate, dealmaturity, global.params, startdate){
if(startdate<=reinvdate){ #reinvest
line.item$maturity <- min(dealmaturity, startdate + global.params$rollingmaturity)
SC <- stackcurve(SC, line.item, global.params, startdate)
}else{ #no reinvestment
SC@curve@dates <- startdate
SC@curve@hazardrates <- 0
SC@curveprepayrates <- 0
}
return( SC )
}
buildSC <- function(line.item, reinvdate, dealmaturity, global.params, startdate){
## cat(line.item$issuername, "\n")
if(!is.na(line.item$iscdo) && line.item$iscdo && is.na(line.item$price)){
##we have prices for some cdos e.g. 210795PS3
orig.moody <- cdorating(line.item$cusip)
if(length(orig.moody)==0){
orig.moody <- "NR"
}
line.item$price <- as.numeric(global.params$cdoprices[orig.moody])
}
##build survival curve
SC <- new("creditcurve", recovery=recovery(line.item), startdate=startdate,
issuer=line.item$issuername)
SC@curve <- new("defaultprepaycurve", dates=as.Date(character(0)))
## defaulted asset
if(!is.na(line.item$defaultedflag) && line.item$defaultedflag){
if(!is.na(line.item$price)){
line.item$currentbalance <- line.item$currentbalance * line.item$price/100
}else{
line.item$currentbalance <- line.item$currentbalance * recovery(line.item)
}
SC@startdate <- startdate + global.params$defaultedlag
line.item$maturity <- min(dealmaturity, SC@startdate + global.params$rollingmaturity)
## automatic reinvest
SC<- stackcurve(SC, line.item, global.params, SC@startdate)
}else if(line.item$maturity<=startdate){#matured asset
SC <- buildSC.matured(SC, line.item, reinvdate, dealmaturity, global.params, startdate)
}else if(is.na(line.item$price)){ #missing price
SC <- stackcurve(SC, line.item, global.params, SC@startdate)
}else{ #normal case
if(line.item$assettype=="Bond"){ #no prepay rate
alpha <- 0
}else{
alpha <- global.params$alpha
}
try <- bondhazardrate.shaped(line.item, global.params$shape,
recovery(line.item), alpha)
if(is.null(try)){
SC <- stackcurve(SC, line.item, global.params, SC@startdate)
}else{
SC@curve <- try
}
}
if(maturity(SC) <= reinvdate){ #we reinvest
newstartdate <- line.item$maturity
line.item$maturity <- min(dealmaturity, newstartdate + global.params$rollingmaturity)
SC <- stackcurve(SC, line.item, global.params, newstartdate)
}
return( list(SC=SC, notional=line.item$currentbalance) )
}
buildSC.portfolio <- function(dealname, global.params, startdate=today()) {
dealdata <- getdealdata(dealname)
collatdata <- getcollateral(dealname)
notionalvec <- c()
SCvec <- c()
betavec <- c()
for(i in 1:nrow(collatdata)){
line.item <- collatdata[i,]
if( is.na(line.item$maturity) ){
stop("empty maturity")
}
##most likely equity, doesn't impact the risk anyway
if(line.item$currentbalance < 1){
next
}
temp <- buildSC(line.item, dealdata$"Reinv End Date", dealdata$maturity, global.params, startdate)
notionalvec <- c(notionalvec, temp$notional)
SCvec <- c(SCvec, temp$SC)
betavec <- c(betavec, if(!is.na(line.item$iscdo) && line.item$iscdo) 1 else
global.params$defaultcorr)
}
return( list(notional=notionalvec, SC=SCvec, beta=betavec) )
}
cdrfromscenarios <- function(scenarios, dates){
## compute the forward cdr rates to pass to intex
## so that we match the default curves in scenarios
cdr <- matrix(0, nrow(scenarios), ncol(scenarios))
for(i in 1:nrow(scenarios)){
cdr[i,] <- 100*(1-exp(diff(c(0, log(1-scenarios[i,])))))/diff(c(0, yearFrac(today(), dates)))
}
return( cdr )
}
recoveryfromscenarios <- function(scenariosd, scenariosr){
## compute the forward recovery rate based on the term
## structure of recovery scenarios
## we run into trouble for very stressed scenarios
## this code should cap the scenarios at 0 it this happens
intexrecov <- matrix(0, n.scenarios, ncol(scenariosr))
for(i in 1:n.scenarios){
current <- 1
intexrecov[i,1] <- scenariosr[i,1]
for(t in 2:ncol(scenariosr)){
w <- scenariosd[i,current]/scenariosd[i,t]
if(scenariosr[i,t]-w*scenariosr[i,current]>=0){
intexrecov[i,t] <- (scenariosr[i,t]-w*scenariosr[i,current])/(1-w)
current <- current+1
}else{
intexrecov[i,t] <- 0
}
}
}
return(intexrecov)
}
|