aboutsummaryrefslogtreecommitdiffstats
path: root/R/script_calibrate_tranches.R
blob: 99dc152797b9fae6f5f701d6f879d2e3fb7572df (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
#!/usr/bin/Rscript

library("parallel")

if(.Platform$OS.type == "unix"){
  root.dir <- "/home/share/CorpCDOs"
  cl <- makeForkCluster(4)
}else{
  root.dir <- "//WDSENTINEL/share/CorpCDOs"
  cl <- makeCluster(6)
}

source(file.path(root.dir, "code", "R", "cds_utils.R"))
source(file.path(root.dir, "code", "R", "cds_functions_generic.R"))
source(file.path(root.dir, "code", "R", "index_definitions.R"))
source(file.path(root.dir, "code", "R", "tranche_functions.R"))
source(file.path(root.dir, "code", "R", "yieldcurve.R"))
source(file.path(root.dir, "code", "R", "optimization.R"))

#figure out the workdate
filenames <- list.files(file.path(root.dir, "Scenarios", "Calibration"),
                               pattern = "hy19_singlenames*")

dates <- strtrim(sapply(strsplit(filenames, "_"), function(x)x[3]), 10)
workdate <- as.Date(sort(dates, decreasing = TRUE)[1])

#retreive yield curve data
MarkitData <- getMarkitIRData(workdate)
L1m <- buildMarkitYC(MarkitData, dt = 1/12)
L2m <- buildMarkitYC(MarkitData, dt = 1/6)
L3m <-  buildMarkitYC(MarkitData)
L6m <- buildMarkitYC(MarkitData, dt = 1/2)
setEvaluationDate(as.Date(MarkitData$effectiveasof))

## calibrate HY19
## calibrate the single names curves
singlenames.data <- read.csv(file.path(root.dir, "Scenarios", "Calibration",
                                         paste0("hy19_singlenames_", workdate, ".csv")))
nondefaulted <- singlenames.data[!singlenames.data$ticker %in% hy19$defaulted,]
bps <- 1e-4

cdsdates <- as.Date(character(0))
for(tenor in paste0(1:5, "y")){
    cdsdates <- c(cdsdates, cdsMaturity(tenor))
}

hy19portfolio <- c()
for(i in 1:nrow(nondefaulted)){
    SC <- new("creditcurve",
              recovery=nondefaulted$recovery[i]/100,
              startdate=today(),
              issuer=as.character(nondefaulted$ticker[i]))
    quotes <- data.frame(maturity=cdsdates, upfront = as.numeric(nondefaulted[i,4:8]) /100,
                         running=rep(nondefaulted$running[i] * bps, 5))
    SC@curve <- cdshazardrate(quotes, nondefaulted$recovery[i]/100)
    hy19portfolio <- c(hy19portfolio, SC)
}

issuerweights <- rep(1/length(hy19portfolio), length(hy19portfolio))

## load tranche data
K <- c(0, 0.15, 0.25, 0.35, 1)
Kmodified <- adjust.attachments(K, hy19$loss, hy19$factor)
markit.data <- read.csv(file.path(root.dir, "Scenarios", "Calibration",
                                  paste0("hy19_tranches_", workdate, ".csv")))

tranche.upf <- markit.data$Mid
tranche.running <- c(0.05, 0.05, 0.05, 0.05)
# get the index ref
hy19$indexref <- markit.data$bidRefPrice[1]/100
hy19portfolio.tweaked <- tweakcurves(hy19portfolio, hy19)
SurvProb <- SPmatrix(hy19portfolio.tweaked, hy19)

Ngrid <- 2 * nrow(nondefaulted) + 1
recov <- sapply(hy19portfolio.tweaked, attr, "recovery")
cs <- couponSchedule(nextIMMDate(workdate), hy19$maturity,"Q", "FIXED", 0.05, 0)

##calibrate by modifying the factor distribution
bottomup <- 1:3
topdown <- 2:4
n.int <- 500
n.credit <- length(hy19portfolio)
errvec <- c()
quadrature <- gauss.quad.prob(n.int, "normal")
w <- quadrature$weights
Z <- quadrature$nodes
w.mod <- w
defaultprob <- 1 - SurvProb
p <- defaultprob
rho <- 0.45

clusterExport(cl, list("root.dir", "shockprob", "issuerweights", "rho", "Z", "lossrecovdist.term",
                       "lossrecovdist", "lossdistC", "Ngrid",
                       "tranche.pvvec", "tranche.pv", "tranche.pl", "tranche.cl",
                       "trancheloss", "trancherecov", "pos", "Kmodified", "cs"))

## TODO: investigate if this is the right thing w.r.t recovery
parf <- function(i){
    pshocked <- apply(p, 2, shockprob, rho=rho, Z=Z[i])
    S <- 1 - Rstoch[i,,]
    dist <- lossrecovdist.term(pshocked, , issuerweights, S, Ngrid)
    return( tranche.pvvec(Kmodified, dist$L, dist$R, cs))
}

for(l in 1:100){
    Rstoch <- array(0, dim=c(n.int, n.credit, ncol(SurvProb)))
    for(t in 1:ncol(SurvProb)){
        for(i in 1:n.credit){
            Rstoch[,i,t] <- stochasticrecov(recov[i], 0, Z, w.mod, rho, defaultprob[i,t], p[i,t])
        }
    }

    clusterExport(cl, list("Rstoch", "p"))
    result <- parSapply(cl, 1:n.int, parf)
    ## solve the optimization problem
    program <- KLfit(100*(result[bottomup,]+1), w, tranche.upf[bottomup])

    err <- 0
    for(i in 1:n.credit){
        for(j in 1:ncol(p)){
            err <- err + abs(crossprod(shockprob(p[i,j], rho, Z), program$weight) - defaultprob[i,j])
        }
    }
    errvec <- c(errvec, err)

    ## update the new probabilities
    p <- MFupdate.prob(Z, program$weight, rho, defaultprob)

    errvec <- c(errvec, err)
    w.mod <- program$weight
    cat(err,"\n")
}

write.table(data.frame(Z=Z, w=w.mod),
            file=file.path(root.dir, "Scenarios", "Calibration",
            paste0("calibration-", Sys.Date(), ".csv")),
            col.names=T, row.names=F, sep=",")
save(singlenames.data, hy19, tranche.upf,
     file = file.path(root.dir, "Scenarios", "Calibration", paste0("marketdata-", workdate, ".RData")))