1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
|
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import datetime\n",
"from pandas.tseries.offsets import BDay, MonthEnd\n",
"import globeop_reports as go\n",
"import pandas as pd\n",
"import analytics\n",
"import numpy as np\n",
"\n",
"from analytics.index_data import get_index_quotes\n",
"from analytics.scenarios import run_portfolio_scenarios\n",
"from analytics import BlackSwaption, CreditIndex, BlackSwaptionVolSurface, Portfolio,DualCorrTranche\n",
"\n",
"from utils.db import dbconn, dbengine\n",
"\n",
"from risk.tranches import get_tranche_portfolio\n",
"from risk.swaptions import get_swaption_portfolio\n",
"from risk.bonds import subprime_risk, clo_risk, crt_risk\n",
"\n",
"dawn_engine = dbengine('dawndb')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#PNL Allocation\n",
"date = datetime.date.today() - BDay(1)\n",
"report_date = date - MonthEnd(1)\n",
"report_date"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"################################### Find the strategies that are not defined: undefined needs to be mapped in strat_map\n",
"strats = pd.read_csv('/home/serenitas/edwin/Python/strat_map.csv')\n",
"nav = go.get_net_navs()\n",
"m_pnl = go.get_monthly_pnl(['strat', 'custacctname'])\n",
"m_pnl = m_pnl.reset_index().merge(strats, on=['strat', 'custacctname'], how='left')\n",
"undefined = m_pnl[m_pnl.pnl.isna()].groupby(['strat', 'custacctname']).last()\n",
"#Get PNL Allocation\n",
"#Input latest NAVS to: '/home/serenitas/edwin/Python/subscription_fee_data.csv'\n",
"pnl_alloc = m_pnl.groupby(['date', 'pnl']).sum()\n",
"pnl_alloc = pnl_alloc.join(nav.begbooknav)\n",
"pnl_alloc['strat_return'] = pnl_alloc.mtdtotalbookpl / pnl_alloc.begbooknav\n",
"#rolling 12 months PNL per strategy - copy to RiskMonitor\n",
"start_date = report_date - pd.tseries.offsets.MonthEnd(11)\n",
"rolling_return = pnl_alloc[start_date:report_date].groupby('pnl').sum()['strat_return']\n",
"rolling_return.to_clipboard()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"################################### Average Portfolio Sales Turnover - as of last monthend from today\n",
"#(total Bond Sales Proceeds + paydown)/average starting 12 months NAV\n",
"#Actually: Rolling 12 months sum of (total bond sales proceeds + paydown)/monthly NAV\n",
"nav = go.get_net_navs()\n",
"fund='SERCGMAST'\n",
"sql_string = \"SELECT * FROM bonds WHERE buysell IS False and fund = %s\"\n",
"df = pd.read_sql_query(sql_string, dawn_engine,\n",
" parse_dates={'lastupdate':{'utc':True}, 'trade_date': {}, 'settle_date':{}},\n",
" params=[fund,],\n",
" index_col = 'trade_date')\n",
"df = df.groupby(pd.Grouper(freq='M')).sum()\n",
"#Average traded volume (Bonds only)\n",
"\n",
"#Now get portfolio paydown per month\n",
"portfolio = go.get_portfolio()\n",
"portfolio = portfolio[(portfolio.custacctname == 'V0NSCLMAMB') &\n",
" (portfolio.identifier != 'USD') &\n",
" (portfolio.endqty != 0)]\n",
"cf = pd.read_sql_query(\"SELECT * FROM cashflow_history\", dawn_engine,\n",
" parse_dates=['date'],\n",
" index_col=['date']).sort_index()\n",
"portfolio = portfolio.set_index('identifier', append=True)\n",
"portfolio = portfolio['endqty'].groupby(['identifier', 'periodenddate']).sum()\n",
"portfolio = portfolio.reset_index('identifier')\n",
"df_1 = pd.merge_asof(cf, portfolio.sort_index(), left_index=True, right_index=True, by='identifier')\n",
"df_1 = df_1.dropna(subset=['endqty'])\n",
"df_1 = df_1[(df_1.principal_bal != 0) & (df_1.principal != 0)]\n",
"df_1['paydown'] = df_1.apply(lambda df: df.endqty/df.principal_bal * df.principal, axis=1)\n",
"paydowns = df_1.paydown.groupby(pd.Grouper(freq='M')).sum()\n",
"temp = pd.concat([paydowns, df.principal_payment, df.accrued_payment], axis=1).fillna(0)\n",
"turnover = (temp.sum(axis=1)/nav.begbooknav).rolling(12).sum()\n",
"turnover[12:].plot()\n",
"turnover[-1]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"################################### Average Portfolio Sales Turnover - as of last monthend from today\n",
"#(total Bond Sales Proceeds + paydown)/average starting 12 months NAV\n",
"#Actually: Rolling 12 months sum of (total bond sales proceeds + paydown)/monthly NAV\n",
"nav = go.get_net_navs()\n",
"fund='SERCGMAST'\n",
"sql_string = \"SELECT * FROM bonds WHERE buysell IS False and fund = %s\"\n",
"df = pd.read_sql_query(sql_string, dawn_engine,\n",
" parse_dates={'lastupdate':{'utc':True}, 'trade_date': {}, 'settle_date':{}},\n",
" params=[fund,],\n",
" index_col = 'trade_date')\n",
"df = df.groupby(pd.Grouper(freq='M')).sum()\n",
"\n",
"cf = pd.read_sql_query(\"SELECT * FROM cashflow_history\", dawn_engine,\n",
" parse_dates=['date'],\n",
" index_col=['date']).sort_index()\n",
"sql_string = \"SELECT description, identifier, notional, price, factor FROM risk_positions(%s, %s, 'BRINKER')\"\n",
"pos = {}\n",
"for d in cf.index.unique():\n",
" for ac in ['Subprime', 'CRT']:\n",
" pos[d, ac] = pd.read_sql_query(sql_string, dawn_engine, params=[d.date(), ac])\n",
"pos = pd.concat(pos, names=['date', 'asset_class'])\n",
"pos = pos.reset_index(level=[1,2])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"################################### Average Monthly Traded Volume\n",
"nav = go.get_net_navs()\n",
"sql_string = \"SELECT * FROM bonds\"\n",
"df = pd.read_sql_query(sql_string, dawn_engine,\n",
" parse_dates={'lastupdate':{'utc':True}, 'trade_date': {}, 'settle_date':{}},\n",
" index_col = 'trade_date')\n",
"df = df.groupby(pd.Grouper(freq='M')).sum()\n",
"volume = df.principal_payment/nav.endbooknav\n",
"volume.mean()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"################################### Average Holding Period\n",
"#Time series of bond portfolio age (portfolio date - latest buy date of position) - weighted by MV of all bonds.\n",
"#Problem is if we buy the same position again it resets to the holding period to 0\n",
"nav = go.get_net_navs()\n",
"sql_string = \"SELECT * FROM bonds order by trade_date desc\"\n",
"df = pd.read_sql_query(sql_string, dawn_engine,\n",
" parse_dates={'lastupdate':{'utc':True}, 'trade_date': {}, 'settle_date':{}},\n",
" index_col = 'trade_date')\n",
"buys = df[df.buysell == True].sort_index()\n",
"buys['buy_date'] = buys.index\n",
"#get portfolio \n",
"port = go.get_portfolio()\n",
"port.sort_index(inplace=True)\n",
"buy_dates = pd.merge_asof(port, buys[['buy_date', 'identifier']], left_index=True, right_index=True,by='identifier', direction='backward')\n",
"buy_dates = buy_dates[['identifier', 'endbooknav','buy_date']][~buy_dates.buy_date.isna()]\n",
"buy_dates['hold_days'] = (buy_dates.index - buy_dates.buy_date)/np.timedelta64(1, 'D')\n",
"def weighted_average(df):\n",
" return np.average(df.hold_days,weights=df.endbooknav)\n",
"hold_period = buy_dates.groupby('periodenddate').apply(func = weighted_average)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"################################## Calculate Historical Bond Duration/Yield\n",
"analytics.init_ontr()\n",
"mysql_engine = dbengine('rmbs_model')\n",
"end_date = pd.datetime.today() - MonthEnd(1)\n",
"dates = pd.date_range(datetime.date(2013, 1, 30), end_date, freq=\"M\")\n",
"calc_df = pd.DataFrame()\n",
"sql_string = (\"SELECT distinct timestamp::date FROM priced where normalization = 'current_notional' and model_version = 1 \"\n",
" \"and date(timestamp) < %s and date(timestamp) > %s order by timestamp desc\")\n",
"with dbconn('etdb') as etconn, dbconn('dawndb') as dawnconn:\n",
" for d in dates:\n",
" timestamps = pd.read_sql_query(sql_string, dawn_engine, parse_dates=[\"timestamp\"], params=[d, d - pd.tseries.offsets.DateOffset(15, \"D\")])\n",
" calc_df = calc_df.append(subprime_risk(d.date(), dawnconn, mysql_engine, timestamps.iloc[0,0].date()))\n",
"calc_df=calc_df.reset_index().set_index('date')\n",
"calc_df = calc_df.dropna(subset=['bond_yield', 'hy_equiv']) \n",
"bond_stats = pd.DataFrame()\n",
"for d, g in calc_df.groupby(pd.Grouper(freq='M')):\n",
" bond_stats.loc[d, 'dur'] = sum(g.notional * g.factor * g.modDur)/sum(g.notional * g.factor)\n",
" bond_stats.loc[d, 'yield'] = sum(g.usd_market_value * g.modDur * g.bond_yield) /sum(g.usd_market_value * g.modDur)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"################################### Calculate stress scenario \n",
"position_date = (datetime.date.today() - BDay(1)).date()\n",
"shock_date = (datetime.date.today() - BDay(1)).date()\n",
"spread_date = shock_date\n",
"(position_date, spread_date, shock_date)\n",
"analytics.init_ontr(spread_date)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#Calculate amount of stress for reports\n",
"from analytics.curve_trades import on_the_run\n",
"df = get_index_quotes('HY', list(range(on_the_run('HY', spread_date) - 10, on_the_run('HY', spread_date) + 1)),\n",
" tenor=['5yr'], years=5)\n",
"df = df.xs('5yr', level='tenor')['close_spread'].groupby(['date', 'series']).last()\n",
"\n",
"widen, tighten = [], []\n",
"#approximately 1,3,6 months move (22 each months)\n",
"for days in [22, 66, 132]: \n",
" calc = df.unstack().pct_change(freq= str(days)+'B').stack().groupby('date').last()\n",
" widen.append(calc.max())\n",
" tighten.append(calc.min())\n",
"pd.DataFrame([widen, tighten], columns=['1M', '3M', '6M'], index=['widen', 'tighten'])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#tranche positions\n",
"conn = dawn_engine.raw_connection()\n",
"mysql_engine = dbengine('rmbs_model')\n",
"mysqlcrt_engine = dbengine('crt')\n",
"\n",
"portf = get_tranche_portfolio(position_date, conn, False, 'SERCGMAST')\n",
"s_portf = get_swaption_portfolio(position_date, conn)\n",
"for t, id in zip(s_portf.trades, s_portf.trade_ids):\n",
" portf.add_trade(t, id)\n",
"\n",
"#index positions\n",
"df = pd.read_sql_query(\"SELECT * from list_cds_positions_by_strat(%s)\",\n",
" dawn_engine, params=(position_date,))\n",
"df_no_curve = df[~df.folder.str.contains(\"CURVE\")]\n",
"for t in df_no_curve.itertuples(index=False):\n",
" portf.add_trade(CreditIndex(redcode=t.security_id, maturity=t.maturity, notional=t.notional),\n",
" (t.folder, t.security_desc))\n",
" \n",
"#separately add in curve delta\n",
"df_curve = df[df.folder.str.contains(\"CURVE\")]\n",
"curve_portf = Portfolio([CreditIndex(redcode=t.security_id, maturity=t.maturity, notional=t.notional)\n",
" for t in df_curve.itertuples(index=False)])\n",
"curve_portf.value_date = spread_date\n",
"curve_portf.mark()\n",
"\n",
"portf.add_trade(CreditIndex('HY', on_the_run('HY', spread_date), '5yr', \n",
" value_date=spread_date, \n",
" notional=curve_portf.hy_equiv), ('curve_trades', ''))\n",
"\n",
"#get bond risks:\n",
"with dbconn('etdb') as etconn, dbconn('dawndb') as dawnconn:\n",
" rmbs_pos = subprime_risk(position_date, dawnconn, mysql_engine)\n",
" clo_pos = clo_risk(position_date, dawnconn, etconn)\n",
" crt_pos = crt_risk(position_date, dawnconn, mysqlcrt_engine)\n",
"if clo_pos is None:\n",
" notional = rmbs_pos['hy_equiv'].sum() + crt_pos['hy_equiv'].sum()\n",
"else:\n",
" notional = rmbs_pos['hy_equiv'].sum() + clo_pos['hy_equiv'].sum() + crt_pos['hy_equiv'].sum()\n",
"portf.add_trade(CreditIndex('HY', on_the_run('HY', spread_date), '5yr', \n",
" value_date = spread_date, \n",
" notional = -notional), ('bonds', ''))\n",
" \n",
"portf.value_date = spread_date\n",
"portf.mark(interp_method=\"bivariate_linear\")\n",
"portf.reset_pv()\n",
"\n",
"vol_surface = {}\n",
"for trade in portf.swaptions:\n",
" vs = BlackSwaptionVolSurface(trade.index.index_type, trade.index.series, \n",
" value_date=spread_date, interp_method = \"bivariate_linear\")\n",
" vol_surface[(trade.index.index_type, trade.index.series, trade.option_type)] = vs[vs.list(source='MS', option_type=trade.option_type)[-1]]\n",
"\n",
"scens = run_portfolio_scenarios(portf, date_range=[pd.Timestamp(shock_date)], params=[\"pnl\"],\n",
" spread_shock=widen,\n",
" vol_shock=[0],\n",
" corr_shock = [0],\n",
" vol_surface=vol_surface)\n",
"\n",
"attrib = (scens.\n",
" reset_index(level=['date'], drop=True).\n",
" groupby(level=0, axis=1).sum())\n",
"results = attrib.xs((widen[2], 0., 0.), level=['spread_shock', 'corr_shock', 'vol_shock']).T"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"results.to_clipboard(header=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"################################### Run set of scenario\n",
"spread_shock = np.round(np.arange(-.2, 1, .05), 3)\n",
"scens = run_portfolio_scenarios(portf, date_range, params=['pnl', 'delta'],\n",
" spread_shock=spread_shock,\n",
" vol_shock=vol_shock,\n",
" corr_shock=[0],\n",
" vol_surface=vol_surface)\n",
"\n",
"pnl = scens.xs('pnl', axis=1, level=2)\n",
"pnl = pnl.xs((0,0), level=['vol_shock', 'corr_shock'])\n",
"\n",
"scenarios = (pnl.\n",
" reset_index(level=['date'], drop=True).\n",
" groupby(level=0, axis=1).sum())\n",
"\n",
"options = ['HYOPTDEL', 'HYPAYER', 'HYREC', 'IGOPTDEL', 'IGPAYER', 'IGREC']\n",
"tranches = ['HYMEZ', 'HYINX', 'HYEQY', 'IGMEZ', 'IGINX', 'IGEQY', 'IGSNR', 'IGINX', 'BSPK']\n",
"\n",
"scenarios['options'] = scenarios[set(scenarios.columns).intersection(options)].sum(axis=1)\n",
"scenarios['tranches'] = scenarios[set(scenarios.columns).intersection(tranches)].sum(axis=1)\n",
"\n",
"synthetic = scenarios[['options', 'tranches', 'curve_trades']]\n",
"synthetic['total'] = synthetic.sum(axis = 1)\n",
"nav = go.get_net_navs()\n",
"(synthetic/nav.endbooknav[-1]).plot()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.4"
}
},
"nbformat": 4,
"nbformat_minor": 4
}
|