aboutsummaryrefslogtreecommitdiffstats
path: root/python/notebooks/swaption_risk.ipynb
blob: 8c38ecf86e4bf423df4ec60ac8b697851d9be21c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# better formatting for large floats\n",
    "import pandas as pd\n",
    "pd.options.display.float_format = \"{:,.2f}\".format"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from risk.swaptions import get_swaption_portfolio\n",
    "import datetime\n",
    "from utils.db import dbconn\n",
    "from analytics import init_ontr\n",
    "conn = dbconn('dawndb')\n",
    "conn.autocommit = True\n",
    "init_ontr()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "portf = get_swaption_portfolio(datetime.date.today(), conn, source_list=['GS'])\n",
    "portf"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "df = portf._todf()\n",
    "positions = df.set_index(\"Index\")[[\"Delta\", \"Notional\"]].prod(axis=1).groupby(level=\"Index\").sum()\n",
    "positions.name = 'current_delta'\n",
    "gamma = df.set_index(\"Index\")[[\"Gamma\", \"Notional\"]].prod(axis=1).groupby(level=\"Index\").sum()\n",
    "gamma.name = 'gamma'"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "hedges = pd.read_sql_query(\"SELECT security_desc, notional FROM list_cds_positions_by_strat(%s) \"\n",
    "                           \"WHERE folder in ('IGOPTDEL', 'HYOPTDEL')\",\n",
    "                           conn, params=(datetime.date.today(),))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "def f(s):\n",
    "    l = s.split(\" \")\n",
    "    return f\"{l[1]}{l[3][1:]} {l[4].lower()}r\"\n",
    "\n",
    "hedges[\"Index\"] = hedges[\"security_desc\"].apply(f)\n",
    "hedges = hedges.rename(columns={\"notional\": \"current hedge\"})\n",
    "hedges = hedges.set_index(\"Index\")[\"current hedge\"]\n",
    "hedges = hedges.reindex(positions.index, fill_value=0.)\n",
    "risk = pd.concat([hedges, positions, gamma], axis=1)\n",
    "risk['net_delta'] = risk[\"current hedge\"] + risk.current_delta\n",
    "risk"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from analytics.scenarios import run_portfolio_scenarios\n",
    "from analytics import BlackSwaptionVolSurface, CreditIndex\n",
    "import analytics\n",
    "import datetime\n",
    "import numpy as np\n",
    "\n",
    "today = datetime.datetime.now()\n",
    "yesterday = datetime.date.today() - pd.offsets.BDay()\n",
    "\n",
    "portf = get_swaption_portfolio(yesterday, conn, source_list=['GS'])\n",
    "for i, amt in hedges.iteritems():\n",
    "    portf.add_trade(CreditIndex(i[:2], i[2:4], '5yr', value_date=yesterday, notional=amt), ('delta', i))\n",
    "\n",
    "vol_surface = {}\n",
    "for trade in portf.swaptions:\n",
    "    vs = BlackSwaptionVolSurface(trade.index.index_type, trade.index.series, \n",
    "                                 value_date=today.date(), interp_method = \"bivariate_linear\")\n",
    "    vol_surface[(trade.index.index_type, trade.index.series, trade.option_type)] = vs[vs.list(source='GS', option_type=trade.option_type)[-1]]\n",
    "\n",
    "#Set original_pv as of yesterday's EOD levels, don't reset PV after this time\n",
    "portf.mark(interp_method=\"bivariate_linear\", source_list=['GS'])\n",
    "portf.reset_pv()\n",
    "\n",
    "#set ref to today's levels\n",
    "portf.value_date = today\n",
    "portf.mark(interp_method=\"bivariate_linear\", source_list=['GS'])\n",
    "\n",
    "spread_shock = np.round(np.arange(-.1, .1, .01), 4)\n",
    "scens = run_portfolio_scenarios(portf, [today], params=['pnl', 'hy_equiv', 'sigma'],\n",
    "                                spread_shock=spread_shock,\n",
    "                                vol_shock=[0],\n",
    "                                corr_shock=[0],\n",
    "                                vol_surface=vol_surface)\n",
    "pnl = scens.xs('pnl', level = 2, axis=1).sum(axis=1)\n",
    "hy_equiv = scens.xs('hy_equiv', level = 2, axis=1).sum(axis=1)\n",
    "\n",
    "ig = CreditIndex('IG', 32, '5yr', value_date = today)\n",
    "ig.mark()\n",
    "\n",
    "pnl.index = pnl.index.set_levels((1+pnl.index.get_level_values('spread_shock')) * ig.spread, level = 'spread_shock')\n",
    "hy_equiv.index = pnl.index"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "pnl, hy_equiv"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.7.3"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 4
}