diff options
| author | jeanpouget-abadie <jean.pougetabadie@gmail.com> | 2015-01-22 09:51:02 -0500 |
|---|---|---|
| committer | jeanpouget-abadie <jean.pougetabadie@gmail.com> | 2015-01-22 09:51:02 -0500 |
| commit | 0a78933792790017aa0fe87a18b60bed071cafe1 (patch) | |
| tree | 72003242d11573da1d654c6656e355bb718e9274 /notes/maximum_likelihood_approach.tex | |
| parent | b5462b8e1eb3ae8ddc3008e26bc910954a6840cb (diff) | |
| download | cascades-0a78933792790017aa0fe87a18b60bed071cafe1.tar.gz | |
created ICML folder
Diffstat (limited to 'notes/maximum_likelihood_approach.tex')
| -rw-r--r-- | notes/maximum_likelihood_approach.tex | 32 |
1 files changed, 19 insertions, 13 deletions
diff --git a/notes/maximum_likelihood_approach.tex b/notes/maximum_likelihood_approach.tex index c145b0c..4a22158 100644 --- a/notes/maximum_likelihood_approach.tex +++ b/notes/maximum_likelihood_approach.tex @@ -110,15 +110,13 @@ We are going to explicitate a constant $\gamma$ such that: $\forall \Delta \in { Suppose that $\forall k$, $\mathbb{E}_{S(k)} \left[ \frac{1}{p_i} \right] \geq 1 + \alpha$, then with probability greater than $1 - 2 p e^{-2 \alpha^2 (1-c)^2p_{\min}^2 p_{\text{init}}^2 N}$, $$\forall k, \ Z_k > c \alpha p_{\text{init}} N$$ \end{lemma} -{\color{red} The following is not exactly correct!} Since the expectation must be taken conditioned on the probability that at least one parent is active such that $p_i$ is not 0! This does change things. - \begin{proof} -Let $S(k)$ denote the active set conditioned on the fact that node $k$ is active. +Let $S(k)$ denote the active set conditioned on the fact that node $k$ is active AND that one parent is active. We denote $p_{S(k)}$ the probability that the active set verifies the previous two conditions. \begin{align} \nonumber -\mathbb{E}[Z^i_k] & = \mathbb{P}(x^i_k = 1) \mathbb{E}_{S(k)} \left[ \mathbb{E}[b^i | S(k)] \frac{1 - p_i}{p_i^2} \right] \\ \nonumber -& = p_{\text{init}} \left( \mathbb{E}_{S(k)} \left[ \frac{1}{p_i} \right] - 1 \right) \\ \nonumber -& \geq \alpha p_{\text{init}} \quad \text{by assumption} +\mathbb{E}[Z^i_k] & = p_{S(k)} \mathbb{E}_{S(k)} \left[ \mathbb{E}[b^i | S(k)] \frac{1 - p_i}{p_i^2} \right] \\ \nonumber +& = p_{S(k)} \left( \mathbb{E}_{S(k)} \left[ \frac{1}{p_i} \right] - 1 \right) \\ \nonumber +& \geq \alpha p_{S(k)} \quad \text{by assumption} \end{align} Note that $|Z^i_k| < \frac{1}{p_{\text{min}}^2}$ {\it a.s.}. By Hoeffding's first inequality, for $0<c <1$, @@ -126,37 +124,44 @@ Note that $|Z^i_k| < \frac{1}{p_{\text{min}}^2}$ {\it a.s.}. By Hoeffding's firs \begin{align} \nonumber \mathbb{P}\left(Z_k < c \alpha p_{\text{init}} N \right) & < 2 e^{- \frac{2(1-c)^2}{Nb^2} \left( \mathbb{E}_{S(k)} \left[ \frac{1}{p_i} \right] - 1 \right)^2} \\ \nonumber -& < 2 e^{-2 \alpha^2 (1-c)^2p_{\min}^2 p_{\text{init}}^2 N} +& < 2 e^{-2 \alpha^2 (1-c)^2p_{\min}^2 p_{S(k)}^2 N} \end{align} We conclude by union bound. \end{proof} \begin{lemma} -Suppose that $\forall k,j$, $1 + \alpha \leq \mathbb{E}_{S(k, j)} \left[ \frac{1}{p_i} \right] \leq 1 + \beta$, then with probability greater than $1 - pe^{-2 \alpha^2 (1-c)^2p_{\min}^2 p_{\text{init}}^4 N}$, $$\forall k,j, \ Z_{k,j} < c \beta p_{\text{init}}^2 N$$ +Suppose that $\forall k,j$, $1 + \alpha \leq \mathbb{E}_{S(k, j)} \left[ \frac{1}{p_i} \right] \leq 1 + \beta$, then with probability greater than $1 - pe^{-2 \alpha^2 (1-c)^2p_{\min}^2 p_{S(k,j)}^2 N}$, $$\forall k,j, \ Z_{k,j} < c \beta p_{S(k,j))} N$$ \end{lemma} \begin{proof} We follow the same reasoning as Lemma~\ref{lem:first_term}: \begin{align} \nonumber -\mathbb{E}[Z^i_{k,j}] & = p_{\text{init}}^2 \left( \mathbb{E}_{S(k,j)} \left[ \frac{1}{p_i} \right] - 1 \right) \\ \nonumber -& \leq \beta p_{\text{init}}^2 \quad \text{by assumption} +\mathbb{E}[Z^i_{k,j}] & = p_{S(k,j)} \left( \mathbb{E}_{S(k,j)} \left[ \frac{1}{p_i} \right] - 1 \right) \\ \nonumber +& \leq \beta p_{S(k,j)} \quad \text{by assumption} \end{align} By Hoeffding's second inequality, for $0 < c < 1$, \begin{align} \nonumber -\mathbb{P}\left(Z_{k,j} > c \beta p_{\text{init}}^2 N \right) & \leq e^{- \frac{2(1-c)^2}{Nb^2} \left( \mathbb{E}_{S(k,j)} \left[ \frac{1}{p_i} \right] - 1 \right)^2} \\ \nonumber -& \leq e^{-2 \alpha^2 (1-c)^2p_{\min}^2 p_{\text{init}}^4 N} +\mathbb{P}\left(Z_{k,j} > c \beta p_{S(k,j)} N \right) & \leq e^{- \frac{2(1-c)^2}{Nb^2} \left( \mathbb{E}_{S(k,j)} \left[ \frac{1}{p_i} \right] - 1 \right)^2} \\ \nonumber +& \leq e^{-2 \alpha^2 (1-c)^2p_{\min}^2 p_{S(k,j)}^2 N} \end{align} We conclude by union bound. \end{proof} \begin{proposition} -Suppose that $\forall k,j$, $1 + \alpha \leq \mathbb{E}_{S(k, j)} \left[ \frac{1}{p_i} \right] \leq 1 + \beta$, then with probability greater than $1 - XXX$, condition~\ref{eq:RSC_condition} is met with $\gamma_n = \gamma n$ where $\gamma := p_{\text{init}}(\alpha - 16 \sqrt{s} \beta p_{\text{init}})$ +Suppose that $\forall k,j$, $1 + \alpha \leq \mathbb{E}_{S(k, j)} \left[ \frac{1}{p_i} \right] \leq 1 + \beta$, then with probability greater than $1 - XXX$, condition~\ref{eq:RSC_condition} is met with $\gamma_n = \gamma n$ where $\gamma := \alpha p_{S(k)} - 16 \sqrt{s} \beta p_{S(k,j)}$ \end{proposition} +\begin{proof} +(Sketch) By the triangle inequality followed by MacLaurin's inequality, +\begin{align} +\mid \frac{2}{\binom{n}{2}} \sum_{i<j} \Delta_k \Delta_j \mid & \leq \frac{1}{n^2} \sum_k \mid \Delta_k \mid \nonumber \\ +\mid 2 \sum_{i<j} \Delta_k \Delta_j \mid & \leq \|\Delta\|_1 \leq 4 \sqrt{s} \| \Delta \|_2 \quad \text{ since } \Delta \in {\cal C} \nonumber +\end{align} +\end{proof} \paragraph{Hoeffding's inequality} @@ -197,6 +202,7 @@ For $t \in \mathbb{R}$ and independent variables $Z_i$ such that $|Z_i|<b$ {\it % \subsection*{Second term} % We are now going to find an upper-bound on the term $\sum_i b^i x^i_k x^i_j \frac{1 - p_i}{p_i^2}$. + \section*{Conclusion} Suppose we show that Condition~\ref{eq:RSC_condition} is met for $\gamma_n = \gamma N$, then we have the following theorems: |
