diff options
| author | Jean Pouget-Abadie <jean.pougetabadie@gmail.com> | 2015-05-06 20:28:04 -0400 |
|---|---|---|
| committer | Jean Pouget-Abadie <jean.pougetabadie@gmail.com> | 2015-05-06 20:28:04 -0400 |
| commit | dea98c581c95c4a143c8f2fe7a59c902a798024e (patch) | |
| tree | cf050a12c0cef02675be8951d665ffd42da904ad /paper | |
| parent | 6dcedc33f27f40c23fa7bf456fec09e5f9d0c056 (diff) | |
| download | cascades-dea98c581c95c4a143c8f2fe7a59c902a798024e.tar.gz | |
added continuous time+figure
Diffstat (limited to 'paper')
| -rw-r--r-- | paper/sections/model.tex | 36 |
1 files changed, 30 insertions, 6 deletions
diff --git a/paper/sections/model.tex b/paper/sections/model.tex index fbcedf3..4241f93 100644 --- a/paper/sections/model.tex +++ b/paper/sections/model.tex @@ -148,8 +148,30 @@ step $t$, then we have: Thus, the linear voter model is a Generalized Linear Cascade model with inverse link function $f: z \mapsto z$. -{\color{red} \subsubsection{Discretization of Continous Model} -TODO} +\subsubsection{Discretization of Continous Model} + +Consider the continuous-time independent cascade model with exponential +transmission function (CICE) of~\cite{GomezRodriguez:2010, Abrahao:13, +Daneshmand:2014} where time is binned into intervals of length $\epsilon$. Let +$X^k$ be the set of nodes `infected' before or during the $k^{th}$ time +interval. Note that contrary to the discrete-time independent cascade model, +$X^k_i = 1 \implies X^{k+1}_i = 1$. Let $\exp(p)$ be an +exponentially-distributed random variable of parameter $p$. By the memoryless +property of the exponential, if we consider that $\forall i,\Theta_{i,j} = 0 if +(i,j) \notin E$, then if $X^k_j \neq 1$: +\begin{align*} + \mathbb{P}(X^{k+1}_j = 1 | X^k) & = \mathbb{P}(\min_{i \in {\cal N}(j)} + \exp(p_{i,j}) \leq \epsilon) \\ + & = \mathbb{P}(\exp( \sum_{i=1}^m \Theta_{i,j} X^t_i) \leq \epsilon) \\ + & = 1 - e^{- \epsilon \cdot \theta_j \cdot X^t} +\end{align*} +This formulation is consistent when $X^k_j = 1$ by considering the dummy +variables $\forall i, \Theta_{i,i} = +\infty$. Therefore, the +$\epsilon-$binned-process of the continuous-time model with exponential +transmission function is a Generalized Linear Cascade model with inverse link +function $f:z\mapsto 1-e^{-\epsilon\cdot z}$. + +\subsubsection{Logistic Cascades} % \subsection{The Linear Threshold Model} @@ -174,13 +196,15 @@ TODO} % \begin{equation} \label{eq:lt} \tag{LT} \mathbb{P} \left[X^{t+1}_j = 1 | % X^t\right] = \text{sign} \left(\inprod{\theta_j}{X^t} - t_j \right) % \end{equation} where ``sign'' is the function $\mathbbm{1}_{\cdot > 0}$. - -{\color{red} Add drawing of math problem as in Edo's presentation} - - \subsection{Maximum Likelihood Estimation} \label{sec:mle} +\begin{figure} + \includegraphics[scale=.4]{figures/drawing.pdf} + \caption{Illustration of the sparse-recovery approach} +\end{figure} + + Inferring the model parameter $\Theta$ from observed influence cascades is the central question of the present work. Recovering the edges in $E$ from observed influence cascades is a well-identified problem known as the \emph{Graph |
