aboutsummaryrefslogtreecommitdiffstats
path: root/poster/Finale_poster/poster.tex
diff options
context:
space:
mode:
authorjeanpouget-abadie <jean.pougetabadie@gmail.com>2015-12-03 18:28:56 -0500
committerjeanpouget-abadie <jean.pougetabadie@gmail.com>2015-12-03 18:28:56 -0500
commit00d875c935bf9fc05ee20bc547ad91be9f18f0fa (patch)
tree90fcee7d9b99666fc7c39d16777989dcabeb6e6b /poster/Finale_poster/poster.tex
parentf7bf418794bd6630eb3e3730593c76d62f1bb95f (diff)
downloadcascades-00d875c935bf9fc05ee20bc547ad91be9f18f0fa.tar.gz
finished first pass
Diffstat (limited to 'poster/Finale_poster/poster.tex')
-rw-r--r--poster/Finale_poster/poster.tex110
1 files changed, 62 insertions, 48 deletions
diff --git a/poster/Finale_poster/poster.tex b/poster/Finale_poster/poster.tex
index c750194..8f1bd1d 100644
--- a/poster/Finale_poster/poster.tex
+++ b/poster/Finale_poster/poster.tex
@@ -63,16 +63,16 @@
\vspace{1em}
\begin{figure}
\begin{center}
- \includegraphics[scale=1.5]{drawing.pdf}
+ \includegraphics[scale=2.5]{drawing.pdf}
\end{center}
\end{figure}
\end{block}
\begin{block}{MLE}
\begin{itemize}
- \item Log-likelihood is concave for common contagion models (IC model): SGD
- on $\{\theta_{ij}\}$
- \end{itemize}
+ \item For node $i$, $y^t = x^{t+1}_i$
+ \item For node $i$, $\{(x^t, y^t)\}$ are drawn from a GLM
+ \item SGD on $\{\theta_{ij}\}$
\vspace{1cm}
\begin{equation*}
\begin{split}
@@ -80,68 +80,58 @@
\\ & + (1-y^t) \log \big(1 - f(\theta\cdot x^t)\big)
\end{split}
\end{equation*}
+\item Log-likelihood is concave for common contagion models (IC model)
+\item Prior work~\cite{} finds convergence guarantees for $L1$-regularization
+ \end{itemize}
\end{block}
+\end{column} % End of the first column
+
+%-----------------------------------------------------------------------------
+\begin{column}{\sepwid}\end{column} % Empty spacer column
+%-----------------------------------------------------------------------------
+\begin{column}{\onecolwid} % The first column
\begin{block}{Bayesian Framework}
\begin{figure}
\centering
\includegraphics[scale=3]{graphical.pdf}
\end{figure}
+{\bf Advantages:}
\begin{itemize}
- \item $\phi$: fixed source distribution
- \item capture uncertainty on each edge
- \item encode expressive graph priors (tied parameters)
+ \item encode expressive graph priors (e.g. ERGMs)
+ \item quantify uncertainty over each edge
+\end{itemize}
+{\bf Disadvantages:}
+\begin{itemize}
+ \item Hard to scale in large data volume regime
\end{itemize}
\end{block}
-\end{column} % End of the first column
-
-%-----------------------------------------------------------------------------
-\begin{column}{\sepwid}\end{column} % Empty spacer column
-%-----------------------------------------------------------------------------
-\begin{column}{\onecolwid} % The first column
-
\begin{block}{Active Learning}
\emph{Can we gain by choosing the source node? If so, how to best choose the
source node?}
+ \begin{center}--OR--\end{center}
+ \emph{Can we choose the parts of the dataset we compute next?}
\end{block}
-\begin{block}{Heuristic 1}
- \begin{itemize}
- \item Choose source proportional to estimated degree
- \item Intuition:
- \begin{itemize}
- \item deeper cascades $\implies$ more data
- \item easier to learn non-edges than edges. Higher degree $\implies$
- more edge realizations at the same price.
- \end{itemize}
- \end{itemize}
-\end{block}
+{\bf Idea:} Focus on parts of the graph which are unexplored (high uncertainty).
+i.e.~maximize information gain per cascade
-\begin{block}{Heuristic 2}
- \begin{itemize}
- \item Choose source proportional to mutual information
+Baseline heuristic:
+\begin{itemize}
+ \item Choose source proportional to estimated out-degree $\implies$ wider
+ cascades $\implies$ more data
+\end{itemize}
+
+Principled heuristic:
+\begin{itemize}
+ \item Choose source proportional to mutual information
\begin{equation*}
I((X_t) ,\Theta | x^0 = i) = - H(\Theta | (X_t), X_0 = i) + H(\Theta)
\end{equation*}
- \item Exact strategy requires knowing true distribution of $(X_t)$
- \item Use estimated $\Theta$ to compute $H(\Theta | (X_t), X_0 = i)$
+ \item Exact strategy requires knowing true distribution of $(X_t)$
+ \item Use estimated $\Theta$ to compute $H(\Theta | (X_t), X_0 = i)$
\end{itemize}
-\end{block}
-
-\begin{block}{Heuristic 3}
- \begin{itemize}
- \item Choose source proportional to mutual information of first step of
- cascade and $\Theta$:
- \item Intuition:
- \begin{itemize}
- \item Choose lower bound of mutual information $I(X, Y) \geq I(f(X),
- g(Y))$
- \item First step is most informative~\cite{}
- \end{itemize}
- \end{itemize}
-\end{block}
-
\end{column}
%-----------------------------------------------------------------------------
\begin{column}{\sepwid}\end{column}
@@ -149,9 +139,33 @@
\begin{column}{\onecolwid} % The third column
-%-----------------------------------------------------------------------------
-% REFERENCES
-%-----------------------------------------------------------------------------
+ \begin{block}{Implementation}
+ {\bf Scalable Bayesian Inference}
+ \begin{itemize}
+ \item MCMC (PyMC~\cite{})
+ \item VI (BLOCKS~\cite{})
+ \end{itemize}
+
+ {\bf Scalable Active Learning Criterion}
+Approx.~heuristic:
+\begin{itemize}
+ \item Choose source proportional to mutual information of first step of
+ cascade and $\Theta$: Hope for closed-form formula
+ \item Intuition:
+ \begin{itemize}
+ \item Choose lower bound of mutual information $I(X, Y) \geq I(f(X),
+ g(Y))$ where $f$ is the trunctation function
+ \item First step is most informative~\cite{}
+ \end{itemize}
+ \item Sum over outgoing-edges' variance as proxy
+\end{itemize}
+
+
+ \end{block}
+
+\begin{block}{Results}
+
+\end{block}
\begin{block}{References}
{\scriptsize \bibliography{../../paper/sparse}