aboutsummaryrefslogtreecommitdiffstats
path: root/src/convex_optimization.py
diff options
context:
space:
mode:
authorjeanpouget-abadie <jean.pougetabadie@gmail.com>2015-02-04 10:03:24 -0500
committerjeanpouget-abadie <jean.pougetabadie@gmail.com>2015-02-04 10:03:24 -0500
commit92ea33105921065e52bce2c1ec12b81bd5ad0fd9 (patch)
treed155d986f9153096b91aef97cf308b9302fb0e94 /src/convex_optimization.py
parentd91db65bf9c3db5e3dd53c41576b0fc1b866c8ce (diff)
downloadcascades-92ea33105921065e52bce2c1ec12b81bd5ad0fd9.tar.gz
adding figure
Diffstat (limited to 'src/convex_optimization.py')
-rw-r--r--src/convex_optimization.py4
1 files changed, 2 insertions, 2 deletions
diff --git a/src/convex_optimization.py b/src/convex_optimization.py
index ed99e6b..3111e50 100644
--- a/src/convex_optimization.py
+++ b/src/convex_optimization.py
@@ -48,7 +48,7 @@ def sparse_recovery(lbda, n_cascades):
return f_x, f_xz
-def type_lasso(lbda):
+def type_lasso(lbda, n_cascades):
"""
Solves:
min - sum_j theta_j + lbda*|e^{M*theta} - (1 - w)|_2
@@ -90,7 +90,7 @@ def diff_and_opt(M_val, w_val, f_x, f_xz):
def F(x=None, z=None):
if x is None:
- return 0, cvxopt.matrix(-.1, (n,1))
+ return 0, cvxopt.matrix(-.00001, (n,1))
elif z is None:
y, y_diff = f_x(x, M_val, w_val)
return cvxopt.matrix(float(y), (1, 1)),\