diff options
Diffstat (limited to 'notes/presentation')
| -rw-r--r-- | notes/presentation/beamer_2.tex | 147 |
1 files changed, 113 insertions, 34 deletions
diff --git a/notes/presentation/beamer_2.tex b/notes/presentation/beamer_2.tex index fda5b8d..40dc769 100644 --- a/notes/presentation/beamer_2.tex +++ b/notes/presentation/beamer_2.tex @@ -1,6 +1,6 @@ \documentclass[10pt]{beamer} -\usepackage{amssymb, amsmath, graphicx, amsfonts, color, amsthm} +\usepackage{amssymb, amsmath, graphicx, amsfonts, color, amsthm, wasysym} \newtheorem{proposition}{Proposition} @@ -56,21 +56,43 @@ What do we know? What do we want to know? \frametitle{Independent Cascade Model} \begin{figure} -\includegraphics[scale=.5]{figures/weighted_graph.png} +\includegraphics[scale=.3]{figures/weighted_graph.png} \caption{Weighted, directed graph} \end{figure} \begin{itemize} -\item Three states: susceptible, {\color{blue} infected}, {\color{red} dead} -\item Each {\color{blue} infected} node $i$ has a probability $p_{i,j}$ of infecting each of his neighbors $j$. +\item At $t=0$, nodes are in three possible states: susceptible, {\color{blue} infected}, {\color{red} dead} +\item Each {\color{blue} infected} node $i$ has a ``one-shot'' probability $p_{i,j}$ of infecting each of his susceptible neighbors $j$ at $t+1$. \item A node stays {\color{blue} infected} for one round, then it {\color{red} dies} \item At $t=0$, each node is {\color{blue} infected} with probability $p_{\text{init}}$ +\item Process continues until random time $T$ when no more nodes can become infected. +\item $X_t$: set of {\color{blue} infected} nodes at time $t$ +\item A {\bf cascade} is an instance of the ICC model: $(X_t)_{t=0, t=T}$ \end{itemize} %Notes: Revisit the celebrated independent cascade model -> Influence maximisation is tractable, requires knowledge of weights \end{frame} +%%%%%%%%%%%%%%%%%%%%%%%%% + +\begin{frame} +\frametitle{Independent Cascade Model} + +\begin{figure} +\includegraphics[scale=.5]{figures/weighted_graph.png} +\caption{Weighted, directed graph} +\end{figure} + +\begin{block}{Example} +\begin{itemize} +\item At $t=0$, the {\color{orange} orange} node is infected, and the two other nodes are susceptible. $X_0 = $({\color{orange} orange}) +\item At $t=1$, the {\color{orange}} node infects the {\color{blue} blue} node and fails to infect the {\color{green} green} node. The {\color{orange} orange} node dies. $X_1 = $({\color{blue} blue}) +\item At $t=2$, {\color{blue} blue} dies. $X_3 = \emptyset$ +\end{itemize} +\end{block} + +\end{frame} %%%%%%%%%%%%%%%%%%%%%%%%% @@ -83,10 +105,8 @@ What do we know? What do we want to know? \end{figure} \begin{itemize} -\item If $3$ and $4$ are {\color{blue} infected} at $t$, what is the probability that node $0$ is infected at $t+1$? +\item If $3$ and $4$ are {\color{blue} infected} at $t=0$, what is the probability that node $0$ is infected at $t=1$? $$1 - \mathbb{P}(\text{not infected}) = 1 - (1 - .45)(1-.04)$$ -\item In general, $X_t$ {\color{blue} infected} nodes at t: -$$\mathbb{P}(j \text{ becomes infected at t+1}|X_{t}) = 1 - \prod_{i \in {\cal N}(j) \cap X_{t}} (1 - p_{i,j})$$ \end{itemize} @@ -96,36 +116,57 @@ $$\mathbb{P}(j \text{ becomes infected at t+1}|X_{t}) = 1 - \prod_{i \in {\cal N \begin{frame} \frametitle{Independent Cascade Model} -\begin{proposition} -The ICC, conditioned on previous time step, can be cast as a {\bf generalized linear model} -$$\mathbb{P}(j \in X_{t+1} | X_t) = f(X_t \cdot \theta_j)$$ -\end{proposition} +\begin{figure} +\includegraphics[scale=.5]{figures/weighted_graph.png} +\caption{Weighted, directed graph} +\end{figure} + +\begin{itemize} +\item In general, for each susceptible node $j$: +$$\mathbb{P}(j \text{ becomes infected at t+1}|X_{t}) = 1 - \prod_{i \in {\cal N}(j) \cap X_{t}} (1 - p_{i,j})$$ +\end{itemize} -\begin{proof} -\begin{align} +\end{frame} + + +%%%%%%%%%%%%%%%%%%%%%%%%% + +\begin{frame} +\frametitle{Independent Cascade Model} +For each susceptible node $j$, the event that it becomes {\color{blue} infected} conditioned on previous time step is a Bernoulli: +$$(j \in X_{t+1} | X_t) \sim {\cal B} \big(f(X_t \cdot \theta_j) \big)$$ +\begin{itemize} +\item $\theta_{i,j} := \log(1 - p_{i,j})$ +\item $\theta_j := (0, 0, 0, \theta_{4,j}, 0 \dots, \theta_{k,j}, \dots)$ +\item $f : x \mapsto 1 - e^x$ +\begin{align*} \mathbb{P}(j\in X_{t+1}|X_{t}) & = 1 - \prod_{i \in {\cal N}(j) \cap X_{t}} (1 - p_{i,j}) \\ & = 1 - \exp \left[ \sum_{i \in {\cal N}(j) \cap X_{t}} \log(1 - p_{i,j}) \right] \\ & = 1 - \exp \left[ X_{t} \cdot \theta_{j}\right] -\end{align} -\end{proof} - +\end{align*} +\end{itemize} \end{frame} + + %%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame} \frametitle{Independent Cascade Model} +For each susceptible node $j$, the event that it becomes {\color{blue} infected} conditioned on previous time step is a Bernoulli: +$$(j \in X_{t+1} | X_t) \sim {\cal B} \big(f(X_t \cdot \theta_j) \big)$$ + \begin{block}{Decomposability} \begin{itemize} -\item Conditioned on $X_t$, the state of each node is sampled independently -\item We can focus on learning vector $\theta_{j}$ for each node +\item Conditioned on $X_t$, the state of node $j$ is sampled independently from node $j+1$ +\item We can learn the parents of each node independently \end{itemize} \end{block} \begin{block}{Sparsity} \begin{itemize} -\item $\theta_{i,j} = 0 \Leftrightarrow p_{i,j} = 0$ -\item If graph is ``sparse'', then $\theta_j$ is sparse. +\item $\theta_{i,j} = 0 \Leftrightarrow \log(1 - p_{i,j}) = 0 \Leftrightarrow p_{i,j} = 0$ +\item If graph is ``sparse'', then $p_{j}$ is sparse, then $\theta_j$ is sparse. \end{itemize} \end{block} \end{frame} @@ -137,20 +178,31 @@ $$\mathbb{P}(j \in X_{t+1} | X_t) = f(X_t \cdot \theta_j)$$ \begin{frame} \frametitle{Sparse Recovery} \begin{figure} +\includegraphics[scale=.6]{../images/sparse_recovery_illustration_copy.pdf} +\caption{$\mathbb{P}(j \in X_{t+1}| X_t) = f(X_t\cdot \theta)$} +\end{figure} +\end{frame} + +%%%%%%%%%%%%%%%%%%%%%%%%% + +\begin{frame} +\frametitle{Sparse Recovery} +\begin{figure} \includegraphics[scale=.6]{../images/sparse_recovery_illustration.pdf} -\caption{$f(X_t\cdot \theta) = \mathbb{P}(j \in X_{t+1}| X_t)$} +\caption{$\mathbb{P}(j \in X_{t+1}| X_t) = f(X_t\cdot \theta)$} \end{figure} \end{frame} + %%%%%%%%%%%%%%%%%%%%%%% \begin{frame} \frametitle{Learning from Diffusion Processes} \begin{block}{Problem Statement} \begin{itemize} -\item We are given a graph ${\cal G}$, and a diffusion process parameterized by $\left((\theta_{i,j})_{i,j}, f, p_{\text{init}}\right)$. +\item We are given a graph ${\cal G}$, and a diffusion process $f$ parameterized by $\left((\theta_j)_j, p_{\text{init}}\right)$. \item Suppose we {\bf only} observe $(X_t)$ from the diffusion process. -\item Under what conditions can we learn $\theta_{i,j}$ for all $(i,j)$? How many $(X_t)$ are necessary? +\item Under what conditions can we learn $\theta_{i,j}$ for all $(i,j)$? \end{itemize} \end{block} \end{frame} @@ -160,13 +212,20 @@ $$\mathbb{P}(j \in X_{t+1} | X_t) = f(X_t \cdot \theta_j)$$ \begin{frame} \frametitle{Learning from Diffusion Processes} -\begin{figure} -\includegraphics[scale=.4]{../images/sparse_recovery_illustration.pdf} -\caption{Generalized Linear Model for node $i$} -\end{figure} +% \begin{figure} +% \includegraphics[scale=.4]{../images/sparse_recovery_illustration.pdf} +% \caption{Generalized Cascade Model for node $i$} +% \end{figure} \begin{block}{Likelihood Function} -$${\cal L}(\theta| X_1, \dots X_N) = \frac{1}{{\cal T}_i} \sum_{t \in {\cal T}_i} x^{t+1}_i \log f(\theta_i \cdot x^t) + (1 - x^{t+1}_i) \log(1 - f(\theta_i \cdot x^t))$$ +\begin{align*} +{\cal L}(\theta_1, \dots, \theta_m| X_1, \dots X_n) = \sum_{i=1}^m \sum_{t} & X_{t+1}^i \log f(\theta_i \cdot X_t) + \\ +& (1 - X_{t+1}^i) \log(1 - f(\theta_i \cdot X_t)) +\end{align*} +\end{block} + +\begin{block}{MLE} +For each node $i$, $$\theta_i \in \arg \max {\cal {L}}_i(\theta_i | X_1, X_2, \dots, X_n) - \lambda \|\theta_i\|_1$$ \end{block} \end{frame} @@ -178,7 +237,7 @@ $${\cal L}(\theta| X_1, \dots X_N) = \frac{1}{{\cal T}_i} \sum_{t \in {\cal T}_ \begin{block}{On $f$} \begin{itemize} \item $\log f$ and $\log (1-f)$ have to be concave -\item $\log f$ and $\log (1-f)$ have bounded gradient +\item $\log f$ and $\log (1-f)$ have to have bounded gradient \end{itemize} \end{block} @@ -199,9 +258,9 @@ $${\cal L}(\theta| X_1, \dots X_N) = \frac{1}{{\cal T}_i} \sum_{t \in {\cal T}_ \begin{definition} Let $S$ be the set of parents of node $i$. -$${\cal C} := \{ \Delta : \|\Delta\|_2 = 1, \|\Delta_{\bar S}\| \leq 3 \| \Delta_S\|_1 \}$$ +$${\cal C} := \{ \Delta : \|\Delta\|_2 = 1, \|\Delta_{\bar S}\|_1 \leq 3 \| \Delta_S\|_1 \}$$ ${\cal H}$ verifies the $(S, \gamma)$-RE condition if: -$$\forall X \in {\cal C}, \Delta {\cal H} \Delta \geq \gamma$$ +$$\forall \Delta \in {\cal C}, \Delta {\cal H} \Delta \geq \gamma$$ \end{definition} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%% @@ -214,6 +273,7 @@ Adapting a result from \cite{Negahban:2009}, we have the following theorem: Assume \begin{itemize} \item the Hessian verifies the $(S,\gamma)$-RE condition +\item $f$ and $1-f$ are log-concave \item $|(\log f)'| < \frac{1}{\alpha}$ and $|(\log 1- f)'| < \frac{1}{\alpha}$ \end{itemize} then with high probability: $$\| \theta^*_i - \hat \theta_i \|_2 \leq \frac{6}{\gamma}\sqrt{\frac{s\log m}{\alpha n}}$$ @@ -228,9 +288,28 @@ By thresholding $\hat \theta_i$, if $n > C' s \log m$, we recover the support of %%%%%%%%%%%%%%%%%%%%%%%% \begin{frame} -Comments: Correlated Measurements -TODO: still need to mention somewhere that we are doing penalized log likelihood -condition on $X_t$ is not great, we would like to have condition on the parameters $\theta, p_{\text{init}}$ $->$ Slides about expected hessian +\frametitle{Main result} + +\begin{block}{Correlation} +\begin{itemize} +\item Measurements are correlated, which is unusual and good for us. +\item Independent measurements $\implies$ taking one measurement per cascade. +\end{itemize} +\end{block} + +\begin{block}{Statement w.r.t observations and not the model} +\begin{itemize} +\item The Hessian must verify the $(S,\gamma)$-RE condition \frownie +\item Can we make a conditional statement on $\theta$ and not $X_t$? +\end{itemize} +\end{block} + +\end{frame} + +%%%%%%%%%%%%%%%%%%%%%%% + +\begin{frame} +Slides about expected hessian TODO: slide about matrice de gram! \end{frame} |
