1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
|
\begin{figure}
\includegraphics[scale=.4]{figures/ROC_curve.pdf}
\caption{Precision-Recall curve Holme-Kim Model. 200 nodes, 16200 edges.}
\end{figure}
\begin{table*}[t]
\centering
\begin{tabular}{c c c c}
\includegraphics[scale=.21]{figures/barabasi_albert.pdf}
& \includegraphics[scale=.21]{figures/watts_strogatz.pdf}
& \includegraphics[scale=.23]{figures/kronecker_l2_norm.pdf}
& \includegraphics[scale=.23]{figures/kronecker_l2_norm_nonsparse.pdf}\\
(a) Barabasi-Albert & (b) Watts-Strogatz & (c) sparse Kronecker & (d) non-sparse Kronecker
\end{tabular}
\captionof{figure}{Figures (a) and (b) report the $f1$-score in $\log$ scale for 2 graphs: (a) Barabasi-Albert graph, $300$ nodes, $16200$ edges. (b) Watts-Strogatz graph, $300$ nodes, $4500$ edges. Figures (c) and (d) report the $\ell2$-norm $\|\hat \Theta - \Theta\|_2$ for a Kronecker graph which is: (c) exactly sparse (d) non-exactly sparse}
\label{fig:four_figs}
\end{table*}
In this section, we validate empirically the results and assumptions of Section~\ref{sec:results} for different initializations of parameters ($n$, $m$, $\lambda$) and for varying levels of sparsity. We compare our algorithm to two different state-of-the-art algorithms: \textsc{greedy} and \textsc{mle} from \cite{Netrapalli:2012}. As an extra benchmark, we also introduce a new algorithm \textsc{lasso}, which approximates our \textsc{sparse mle} algorithm. We find empirically that \textsc{lasso} is highly robust, and can be computed more efficiently than both \textsc{mle} and \textsc{sparse mle} without sacrificing for performance.
\paragraph{Experimental setup}
We evaluate the performance of the algorithms on synthetic graphs, chosen for their similarity to real social networks. We therefore consider a Watts-Strogatz graph ($300$ nodes, $4500$ edges) \cite{watts:1998}, a Barabasi-Albert graph ($300$ nodes, $16200$ edges) \cite{barabasi:2001}, a Holme-Kim power law graph ($200$ nodes, $9772$ edges) \cite{Holme:2002}, and the recently introduced Kronecker graph ($256$ nodes, $10000$ edges) \cite{Leskovec:2010}. Undirected graphs are converted to directed graphs by doubling the edges.
For every reported data point, we generate $n$ cascades from the Independent Cascade model for $n \in \{100, 500, 1000, 2000, 5000\}$, and compare for each algorithm the estimated graph $\hat {\cal G}$ with ${\cal G}$. The initial probability of a node being a source is fixed to $0.05$, i.e. an average of $15$ nodes source nodes per cascades for all experiments. All edge weights are chosen uniformly in the interval $[0.2, 0.7]$, except when testing for approximately sparse graphs (see paragraph on robustness). All data points are reported with a $\pm 1$ error margin.
From the set of nodes that are infected at each time step over the $n$ cascades, we attempt to recover the graph ${\cal G}$. In the case of the \textsc{lasso}, \textsc{mle} and \textsc{sparse mle} algorithms, we construct the edges of $\hat {\cal G} : \cup_{j \in V} \{i : \Theta_{ij} > 0.1\}$, \emph{i.e} by thresholding. The parameter $\lambda$ is chosen to be of the order ${\cal O}(\sqrt{\log m / (\alpha n)})$. The true positives are the edges which appear both in ${\cal G}$ and $\hat {\cal G}$ and the true negatives are the edges which appear in neither. Finally, we report the F1-score$=2 \text{precision}\cdot\text{recall}/(\text{precision}+\text{recall})$, which considers the number of true edges recovered by the algorithm over the total number of edges returned by the algorithm (\emph{precision}) with the number of true edges recovered by the algorithm over the total number of edges it should have recovered (\emph{recall}).
\paragraph{Comparison with other algorithms}
Over all experiments, \textsc{sparse mle} achieves higher rates of precision, recall, and f1-score. \textsc{sparse mle} is also robust to approximate sparsity, and displays a faster convergence of the $\ell2$-norm than any other benchmark. Interestingly, both \textsc{mle} and \textsc{sparse mle} perform exceptionally well on the Watts-Strogatz graph. The recovery rate converges at around $5000$ cascades, which is more than $15$ times the number of nodes. By contrast, \textsc{sparse mle} achieves a reasonable $f1$-score of $.75$ for roughly $500$ observed cascades. We did not benchmark against other known algorithms (\textsc{netrate} and \textsc{first edge}) due to the discrete time assumption. These algorithms also suppose a single-source model, whereas \textsc{sparse mle}, \textsc{mle}, and \textsc{greedy} do not. Learning the graph in the case of a multi-source cascade model is intuitively harder but more realistic, since we rarely have access to ``patient 0'' in practice.
\paragraph{The \textsc{lasso} algorithm}
To achieve faster computation time, we considered the following program:
$$\hat \theta_i \in \arg \min_{\theta} \sum_{t \in {\cal T}} |f(\theta_i\cdot x^t) - x_i^{t+1}|^2 + \lambda \|\theta_i\|_1$$
This algorithm, which we name \textsc{Lasso}, has the merit of being both easier and faster to optimize numerically than the other convex-optimization based algorithms. It is also highly robust to approximately-sparse graphs. It approximates the $\textsc{sparse mle}$ algorithm by making the assumption that the observations $x_i^{t+1}$ are of the form: $x_i^{t+1} = f(\theta_i\cdot x^t) + \epsilon$, where $\epsilon$ is random white noise. This is not valid in theory since $\epsilon$ \emph{depends on} $f(\theta_i\cdot x^t)$, however the approximation is validated in practice.
\paragraph{Quantifying robustness}
The previous experiments only considered graphs with strong edges. To test the algorithms in the approximately sparse case, we add sparse edges to the previous graphs according to a bernoulli variable of parameter $1/3$ for every non-edge, and drawing a weight uniformly from $[0,0.1]$. The results are reported in Figure~\ref{fig:four_figs} by plotting the convergence of the $\ell2$-norm error, and show that both the \textsc{lasso}, followed by \textsc{sparse mle} are the most robust to noise.
|