diff options
| author | Ben Green <ben@SEASITs-MacBook-Pro.local> | 2015-06-20 10:13:23 -0400 |
|---|---|---|
| committer | Ben Green <ben@SEASITs-MacBook-Pro.local> | 2015-06-20 10:13:23 -0400 |
| commit | f2891c93b96388442d44512e6c43b092153f8c25 (patch) | |
| tree | f85236ec90e1524a63731aec2ddbe017ab233fe5 /experiments | |
| parent | 958c31ca10c4eed08da818b9e16d84ebfeb44c27 (diff) | |
| download | criminal_cascades-f2891c93b96388442d44512e6c43b092153f8c25.tar.gz | |
tried generating cascades and recovering parameters, still got the same
result where optimization minimizes alpha, delta as much as possible
Diffstat (limited to 'experiments')
| -rw-r--r-- | experiments/build/temp.macosx-10.6-x86_64-2.7/ml.o | bin | 298724 -> 304076 bytes | |||
| -rw-r--r-- | experiments/build_network.py | 2 | ||||
| -rw-r--r-- | experiments/ml.c | 470 | ||||
| -rw-r--r-- | experiments/ml.pyx | 26 | ||||
| -rwxr-xr-x | experiments/ml.so | bin | 109636 -> 109372 bytes | |||
| -rw-r--r-- | experiments/out.log | 2550 | ||||
| -rw-r--r-- | experiments/process.py | 9 |
7 files changed, 2829 insertions, 228 deletions
diff --git a/experiments/build/temp.macosx-10.6-x86_64-2.7/ml.o b/experiments/build/temp.macosx-10.6-x86_64-2.7/ml.o Binary files differindex cbe973b..8b0e648 100644 --- a/experiments/build/temp.macosx-10.6-x86_64-2.7/ml.o +++ b/experiments/build/temp.macosx-10.6-x86_64-2.7/ml.o diff --git a/experiments/build_network.py b/experiments/build_network.py index 0756ded..e34db1c 100644 --- a/experiments/build_network.py +++ b/experiments/build_network.py @@ -39,10 +39,12 @@ def build_network(filename): age += int(row["t1"]) - int(row["spawn1"]) victims[from_] = [] root_victims = {} + print victims.keys() for victim in victims.keys(): if not victims[victim]: del victims[victim] root_victims[victim] = [] + print root_victims.keys() print len(root_victims), len(victims), len(non_victims) return root_victims, victims, non_victims, age diff --git a/experiments/ml.c b/experiments/ml.c index cdf4064..4c3f024 100644 --- a/experiments/ml.c +++ b/experiments/ml.c @@ -1326,7 +1326,6 @@ static char __pyx_k_range[] = "range"; static char __pyx_k_roots[] = "roots"; static char __pyx_k_throw[] = "throw"; static char __pyx_k_zeros[] = "zeros"; -static char __pyx_k_arange[] = "arange"; static char __pyx_k_import[] = "__import__"; static char __pyx_k_thresh[] = "thresh"; static char __pyx_k_float64[] = "float64"; @@ -1369,7 +1368,6 @@ static PyObject *__pyx_kp_s_Users_ben_Documents_Cascade_Pro; static PyObject *__pyx_n_s_ValueError; static PyObject *__pyx_n_s_age; static PyObject *__pyx_n_s_alpha; -static PyObject *__pyx_n_s_arange; static PyObject *__pyx_n_s_args; static PyObject *__pyx_n_s_beta; static PyObject *__pyx_n_s_beta_add; @@ -1426,9 +1424,7 @@ static PyObject *__pyx_n_s_w1; static PyObject *__pyx_n_s_w2; static PyObject *__pyx_n_s_w3; static PyObject *__pyx_n_s_zeros; -static PyObject *__pyx_float__1; -static PyObject *__pyx_float__001; -static PyObject *__pyx_float_0_001; +static PyObject *__pyx_float_0_13; static PyObject *__pyx_tuple_; static PyObject *__pyx_tuple__2; static PyObject *__pyx_tuple__3; @@ -1501,22 +1497,22 @@ static __pyx_t_2ml_DTYPE_t __pyx_f_2ml_weight_success(int __pyx_v_dist, int __py * cdef DTYPE_t structural, temporal, result * structural = delta ** dist # <<<<<<<<<<<<<< * # structural = plogis(w1,delta) * plogis(w2,delta) * plogis(w3,delta) - * # temporal = exp(-alpha*dt) * (exp(alpha)-1) + * temporal = exp(-alpha*dt) * (exp(alpha)-1.) */ __pyx_v_structural = pow(__pyx_v_delta, ((__pyx_t_2ml_DTYPE_t)__pyx_v_dist)); - /* "ml.pyx":19 + /* "ml.pyx":18 + * structural = delta ** dist * # structural = plogis(w1,delta) * plogis(w2,delta) * plogis(w3,delta) - * # temporal = exp(-alpha*dt) * (exp(alpha)-1) - * temporal = 1 - exp(-alpha*dt) # <<<<<<<<<<<<<< + * temporal = exp(-alpha*dt) * (exp(alpha)-1.) # <<<<<<<<<<<<<< + * # temporal = 1 - exp(-alpha*dt) * if exp(-alpha*dt)==0.: print 'UNDERFLOW ERROR' - * # temporal = 1. / (1. + (dt - 1.)/alpha)**0.01 - 1. / (1. + dt/alpha)**0.01 */ - __pyx_v_temporal = (1.0 - exp(((-__pyx_v_alpha) * __pyx_v_dt))); + __pyx_v_temporal = (exp(((-__pyx_v_alpha) * __pyx_v_dt)) * (exp(__pyx_v_alpha) - 1.)); /* "ml.pyx":20 - * # temporal = exp(-alpha*dt) * (exp(alpha)-1) - * temporal = 1 - exp(-alpha*dt) + * temporal = exp(-alpha*dt) * (exp(alpha)-1.) + * # temporal = 1 - exp(-alpha*dt) * if exp(-alpha*dt)==0.: print 'UNDERFLOW ERROR' # <<<<<<<<<<<<<< * # temporal = 1. / (1. + (dt - 1.)/alpha)**0.01 - 1. / (1. + dt/alpha)**0.01 * result = log(structural * temporal) @@ -1937,8 +1933,8 @@ static PyObject *__pyx_pf_2ml_ml(CYTHON_UNUSED PyObject *__pyx_self, PyObject *_ __pyx_t_2ml_DTYPE_t __pyx_t_23; __pyx_t_2ml_DTYPE_t __pyx_t_24; int __pyx_t_25; - double __pyx_t_26; - PyObject *(*__pyx_t_27)(PyObject *); + int __pyx_t_26; + double __pyx_t_27; int __pyx_t_28; int __pyx_lineno = 0; const char *__pyx_filename = NULL; @@ -1967,7 +1963,7 @@ static PyObject *__pyx_pf_2ml_ml(CYTHON_UNUSED PyObject *__pyx_self, PyObject *_ * DTYPE_t beta, ll * list parents, failures, successes * n_roots, n_victims = len(root_victims), len(victims) # <<<<<<<<<<<<<< - * n_nodes = 11270 + * n_nodes = 100 * cdef: */ if (unlikely(__pyx_v_root_victims == Py_None)) { @@ -1986,14 +1982,14 @@ static PyObject *__pyx_pf_2ml_ml(CYTHON_UNUSED PyObject *__pyx_self, PyObject *_ /* "ml.pyx":45 * list parents, failures, successes * n_roots, n_victims = len(root_victims), len(victims) - * n_nodes = 11270 # <<<<<<<<<<<<<< + * n_nodes = 100 # <<<<<<<<<<<<<< * cdef: * np.ndarray[DTYPE_t] probs = np.zeros(n_victims, dtype=DTYPE) */ - __pyx_v_n_nodes = 11270; + __pyx_v_n_nodes = 100; /* "ml.pyx":47 - * n_nodes = 11270 + * n_nodes = 100 * cdef: * np.ndarray[DTYPE_t] probs = np.zeros(n_victims, dtype=DTYPE) # <<<<<<<<<<<<<< * np.ndarray[DTYPE_t] probs_fail = np.zeros(n_victims, dtype=DTYPE) @@ -2119,7 +2115,7 @@ static PyObject *__pyx_pf_2ml_ml(CYTHON_UNUSED PyObject *__pyx_self, PyObject *_ __pyx_t_9 = ((PyArrayObject *)__pyx_t_3); { __Pyx_BufFmt_StackElem __pyx_stack[1]; - if (unlikely(__Pyx_GetBufferAndValidate(&__pyx_pybuffernd_probs_nv.rcbuffer->pybuffer, (PyObject*)__pyx_t_9, &__Pyx_TypeInfo_nn___pyx_t_2ml_DTYPE_t, PyBUF_FORMAT| PyBUF_STRIDES, 1, 0, __pyx_stack) == -1)) { + if (unlikely(__Pyx_GetBufferAndValidate(&__pyx_pybuffernd_probs_nv.rcbuffer->pybuffer, (PyObject*)__pyx_t_9, &__Pyx_TypeInfo_nn___pyx_t_2ml_DTYPE_t, PyBUF_FORMAT| PyBUF_STRIDES| PyBUF_WRITABLE, 1, 0, __pyx_stack) == -1)) { __pyx_v_probs_nv = ((PyArrayObject *)Py_None); __Pyx_INCREF(Py_None); __pyx_pybuffernd_probs_nv.rcbuffer->pybuffer.buf = NULL; {__pyx_filename = __pyx_f[0]; __pyx_lineno = 49; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } else {__pyx_pybuffernd_probs_nv.diminfo[0].strides = __pyx_pybuffernd_probs_nv.rcbuffer->pybuffer.strides[0]; __pyx_pybuffernd_probs_nv.diminfo[0].shape = __pyx_pybuffernd_probs_nv.rcbuffer->pybuffer.shape[0]; @@ -2478,186 +2474,337 @@ static PyObject *__pyx_pf_2ml_ml(CYTHON_UNUSED PyObject *__pyx_self, PyObject *_ } __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; - /* "ml.pyx":76 + /* "ml.pyx":65 + * + * # loop through non-victims + * for i, parents in enumerate(non_victims.itervalues()): # <<<<<<<<<<<<<< + * # for each non victim node, compute the probability that all its + * # parents fail to infect it + */ + __pyx_t_10 = 0; + __pyx_t_1 = 0; + if (unlikely(__pyx_v_non_victims == Py_None)) { + PyErr_Format(PyExc_AttributeError, "'NoneType' object has no attribute '%s'", "itervalues"); + {__pyx_filename = __pyx_f[0]; __pyx_lineno = 65; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + } + __pyx_t_5 = __Pyx_dict_iterator(__pyx_v_non_victims, 1, __pyx_n_s_itervalues, (&__pyx_t_2), (&__pyx_t_11)); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 65; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __Pyx_GOTREF(__pyx_t_5); + __Pyx_XDECREF(__pyx_t_3); + __pyx_t_3 = __pyx_t_5; + __pyx_t_5 = 0; + while (1) { + __pyx_t_12 = __Pyx_dict_iter_next(__pyx_t_3, __pyx_t_2, &__pyx_t_1, NULL, &__pyx_t_5, NULL, __pyx_t_11); + if (unlikely(__pyx_t_12 == 0)) break; + if (unlikely(__pyx_t_12 == -1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 65; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __Pyx_GOTREF(__pyx_t_5); + if (!(likely(PyList_CheckExact(__pyx_t_5))||((__pyx_t_5) == Py_None)||(PyErr_Format(PyExc_TypeError, "Expected %.16s, got %.200s", "list", Py_TYPE(__pyx_t_5)->tp_name), 0))) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 65; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __Pyx_XDECREF_SET(__pyx_v_parents, ((PyObject*)__pyx_t_5)); + __pyx_t_5 = 0; + __pyx_v_i = __pyx_t_10; + __pyx_t_10 = (__pyx_t_10 + 1); + + /* "ml.pyx":68 + * # for each non victim node, compute the probability that all its + * # parents fail to infect it + * failures = [weight_failure(dist, dt, alpha, delta, w1, w2, w3) # <<<<<<<<<<<<<< + * for (dist, dt, w1, w2, w3) in parents] + * probs_nv[i] = sum(failures) + */ + __pyx_t_5 = PyList_New(0); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 68; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __Pyx_GOTREF(__pyx_t_5); + + /* "ml.pyx":69 + * # parents fail to infect it + * failures = [weight_failure(dist, dt, alpha, delta, w1, w2, w3) + * for (dist, dt, w1, w2, w3) in parents] # <<<<<<<<<<<<<< + * probs_nv[i] = sum(failures) + * + */ + if (unlikely(__pyx_v_parents == Py_None)) { + PyErr_SetString(PyExc_TypeError, "'NoneType' object is not iterable"); + {__pyx_filename = __pyx_f[0]; __pyx_lineno = 69; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + } + __pyx_t_4 = __pyx_v_parents; __Pyx_INCREF(__pyx_t_4); __pyx_t_13 = 0; + for (;;) { + if (__pyx_t_13 >= PyList_GET_SIZE(__pyx_t_4)) break; + #if CYTHON_COMPILING_IN_CPYTHON + __pyx_t_6 = PyList_GET_ITEM(__pyx_t_4, __pyx_t_13); __Pyx_INCREF(__pyx_t_6); __pyx_t_13++; if (unlikely(0 < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 69; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + #else + __pyx_t_6 = PySequence_ITEM(__pyx_t_4, __pyx_t_13); __pyx_t_13++; if (unlikely(!__pyx_t_6)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 69; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + #endif + if ((likely(PyTuple_CheckExact(__pyx_t_6))) || (PyList_CheckExact(__pyx_t_6))) { + PyObject* sequence = __pyx_t_6; + #if CYTHON_COMPILING_IN_CPYTHON + Py_ssize_t size = Py_SIZE(sequence); + #else + Py_ssize_t size = PySequence_Size(sequence); + #endif + if (unlikely(size != 5)) { + if (size > 5) __Pyx_RaiseTooManyValuesError(5); + else if (size >= 0) __Pyx_RaiseNeedMoreValuesError(size); + {__pyx_filename = __pyx_f[0]; __pyx_lineno = 69; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + } + #if CYTHON_COMPILING_IN_CPYTHON + if (likely(PyTuple_CheckExact(sequence))) { + __pyx_t_14 = PyTuple_GET_ITEM(sequence, 0); + __pyx_t_15 = PyTuple_GET_ITEM(sequence, 1); + __pyx_t_16 = PyTuple_GET_ITEM(sequence, 2); + __pyx_t_17 = PyTuple_GET_ITEM(sequence, 3); + __pyx_t_18 = PyTuple_GET_ITEM(sequence, 4); + } else { + __pyx_t_14 = PyList_GET_ITEM(sequence, 0); + __pyx_t_15 = PyList_GET_ITEM(sequence, 1); + __pyx_t_16 = PyList_GET_ITEM(sequence, 2); + __pyx_t_17 = PyList_GET_ITEM(sequence, 3); + __pyx_t_18 = PyList_GET_ITEM(sequence, 4); + } + __Pyx_INCREF(__pyx_t_14); + __Pyx_INCREF(__pyx_t_15); + __Pyx_INCREF(__pyx_t_16); + __Pyx_INCREF(__pyx_t_17); + __Pyx_INCREF(__pyx_t_18); + #else + { + Py_ssize_t i; + PyObject** temps[5] = {&__pyx_t_14,&__pyx_t_15,&__pyx_t_16,&__pyx_t_17,&__pyx_t_18}; + for (i=0; i < 5; i++) { + PyObject* item = PySequence_ITEM(sequence, i); if (unlikely(!item)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 69; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __Pyx_GOTREF(item); + *(temps[i]) = item; + } + } + #endif + __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; + } else { + Py_ssize_t index = -1; + PyObject** temps[5] = {&__pyx_t_14,&__pyx_t_15,&__pyx_t_16,&__pyx_t_17,&__pyx_t_18}; + __pyx_t_19 = PyObject_GetIter(__pyx_t_6); if (unlikely(!__pyx_t_19)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 69; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __Pyx_GOTREF(__pyx_t_19); + __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; + __pyx_t_20 = Py_TYPE(__pyx_t_19)->tp_iternext; + for (index=0; index < 5; index++) { + PyObject* item = __pyx_t_20(__pyx_t_19); if (unlikely(!item)) goto __pyx_L17_unpacking_failed; + __Pyx_GOTREF(item); + *(temps[index]) = item; + } + if (__Pyx_IternextUnpackEndCheck(__pyx_t_20(__pyx_t_19), 5) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 69; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __pyx_t_20 = NULL; + __Pyx_DECREF(__pyx_t_19); __pyx_t_19 = 0; + goto __pyx_L18_unpacking_done; + __pyx_L17_unpacking_failed:; + __Pyx_DECREF(__pyx_t_19); __pyx_t_19 = 0; + __pyx_t_20 = NULL; + if (__Pyx_IterFinish() == 0) __Pyx_RaiseNeedMoreValuesError(index); + {__pyx_filename = __pyx_f[0]; __pyx_lineno = 69; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __pyx_L18_unpacking_done:; + } + __pyx_t_12 = __Pyx_PyInt_As_int(__pyx_t_14); if (unlikely((__pyx_t_12 == (int)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 69; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __Pyx_DECREF(__pyx_t_14); __pyx_t_14 = 0; + __pyx_t_26 = __Pyx_PyInt_As_int(__pyx_t_15); if (unlikely((__pyx_t_26 == (int)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 69; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __Pyx_DECREF(__pyx_t_15); __pyx_t_15 = 0; + __pyx_v_dist = __pyx_t_12; + __pyx_v_dt = __pyx_t_26; + __Pyx_XDECREF_SET(__pyx_v_w1, __pyx_t_16); + __pyx_t_16 = 0; + __Pyx_XDECREF_SET(__pyx_v_w2, __pyx_t_17); + __pyx_t_17 = 0; + __Pyx_XDECREF_SET(__pyx_v_w3, __pyx_t_18); + __pyx_t_18 = 0; + + /* "ml.pyx":68 + * # for each non victim node, compute the probability that all its + * # parents fail to infect it + * failures = [weight_failure(dist, dt, alpha, delta, w1, w2, w3) # <<<<<<<<<<<<<< + * for (dist, dt, w1, w2, w3) in parents] + * probs_nv[i] = sum(failures) + */ + __pyx_t_22 = __pyx_PyFloat_AsDouble(__pyx_v_w1); if (unlikely((__pyx_t_22 == (npy_double)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 68; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __pyx_t_23 = __pyx_PyFloat_AsDouble(__pyx_v_w2); if (unlikely((__pyx_t_23 == (npy_double)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 68; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __pyx_t_24 = __pyx_PyFloat_AsDouble(__pyx_v_w3); if (unlikely((__pyx_t_24 == (npy_double)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 68; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __pyx_t_6 = PyFloat_FromDouble(__pyx_f_2ml_weight_failure(__pyx_v_dist, __pyx_v_dt, __pyx_v_alpha, __pyx_v_delta, __pyx_t_22, __pyx_t_23, __pyx_t_24)); if (unlikely(!__pyx_t_6)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 68; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __Pyx_GOTREF(__pyx_t_6); + if (unlikely(__Pyx_ListComp_Append(__pyx_t_5, (PyObject*)__pyx_t_6))) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 68; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; + + /* "ml.pyx":69 + * # parents fail to infect it + * failures = [weight_failure(dist, dt, alpha, delta, w1, w2, w3) + * for (dist, dt, w1, w2, w3) in parents] # <<<<<<<<<<<<<< + * probs_nv[i] = sum(failures) + * + */ + } + __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; + __Pyx_XGOTREF(__pyx_cur_scope->__pyx_v_failures); + __Pyx_XDECREF_SET(__pyx_cur_scope->__pyx_v_failures, ((PyObject*)__pyx_t_5)); + __Pyx_GIVEREF(__pyx_t_5); + __pyx_t_5 = 0; + + /* "ml.pyx":70 + * failures = [weight_failure(dist, dt, alpha, delta, w1, w2, w3) + * for (dist, dt, w1, w2, w3) in parents] + * probs_nv[i] = sum(failures) # <<<<<<<<<<<<<< + * + * # print successes + */ + __pyx_t_5 = PyTuple_New(1); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 70; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __Pyx_GOTREF(__pyx_t_5); + __Pyx_INCREF(__pyx_cur_scope->__pyx_v_failures); + PyTuple_SET_ITEM(__pyx_t_5, 0, __pyx_cur_scope->__pyx_v_failures); + __Pyx_GIVEREF(__pyx_cur_scope->__pyx_v_failures); + __pyx_t_4 = __Pyx_PyObject_Call(__pyx_builtin_sum, __pyx_t_5, NULL); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 70; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __Pyx_GOTREF(__pyx_t_4); + __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; + __pyx_t_24 = __pyx_PyFloat_AsDouble(__pyx_t_4); if (unlikely((__pyx_t_24 == (npy_double)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 70; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; + __pyx_t_26 = __pyx_v_i; + if (__pyx_t_26 < 0) __pyx_t_26 += __pyx_pybuffernd_probs_nv.diminfo[0].shape; + *__Pyx_BufPtrStrided1d(__pyx_t_2ml_DTYPE_t *, __pyx_pybuffernd_probs_nv.rcbuffer->pybuffer.buf, __pyx_t_26, __pyx_pybuffernd_probs_nv.diminfo[0].strides) = __pyx_t_24; + } + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + + /* "ml.pyx":80 * # cdef: * # np.ndarray[DTYPE_t] cums = probs.cumsum() * ll = probs_fail.sum() # add probability that all edges to victims fail # <<<<<<<<<<<<<< * ll += probs_nv.sum() # add probability that all edges to non_victims fail * */ - __pyx_t_5 = __Pyx_PyObject_GetAttrStr(((PyObject *)__pyx_v_probs_fail), __pyx_n_s_sum); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 76; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_5); - __pyx_t_4 = NULL; - if (CYTHON_COMPILING_IN_CPYTHON && likely(PyMethod_Check(__pyx_t_5))) { - __pyx_t_4 = PyMethod_GET_SELF(__pyx_t_5); - if (likely(__pyx_t_4)) { - PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_5); - __Pyx_INCREF(__pyx_t_4); + __pyx_t_4 = __Pyx_PyObject_GetAttrStr(((PyObject *)__pyx_v_probs_fail), __pyx_n_s_sum); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 80; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __Pyx_GOTREF(__pyx_t_4); + __pyx_t_5 = NULL; + if (CYTHON_COMPILING_IN_CPYTHON && likely(PyMethod_Check(__pyx_t_4))) { + __pyx_t_5 = PyMethod_GET_SELF(__pyx_t_4); + if (likely(__pyx_t_5)) { + PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_4); + __Pyx_INCREF(__pyx_t_5); __Pyx_INCREF(function); - __Pyx_DECREF_SET(__pyx_t_5, function); + __Pyx_DECREF_SET(__pyx_t_4, function); } } - if (__pyx_t_4) { - __pyx_t_3 = __Pyx_PyObject_CallOneArg(__pyx_t_5, __pyx_t_4); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 76; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; + if (__pyx_t_5) { + __pyx_t_3 = __Pyx_PyObject_CallOneArg(__pyx_t_4, __pyx_t_5); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 80; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; } else { - __pyx_t_3 = __Pyx_PyObject_CallNoArg(__pyx_t_5); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 76; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __pyx_t_3 = __Pyx_PyObject_CallNoArg(__pyx_t_4); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 80; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } __Pyx_GOTREF(__pyx_t_3); - __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; - __pyx_t_22 = __pyx_PyFloat_AsDouble(__pyx_t_3); if (unlikely((__pyx_t_22 == (npy_double)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 76; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; + __pyx_t_24 = __pyx_PyFloat_AsDouble(__pyx_t_3); if (unlikely((__pyx_t_24 == (npy_double)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 80; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; - __pyx_v_ll = __pyx_t_22; + __pyx_v_ll = __pyx_t_24; - /* "ml.pyx":77 + /* "ml.pyx":81 * # np.ndarray[DTYPE_t] cums = probs.cumsum() * ll = probs_fail.sum() # add probability that all edges to victims fail * ll += probs_nv.sum() # add probability that all edges to non_victims fail # <<<<<<<<<<<<<< * * # print 'probs', probs */ - __pyx_t_3 = PyFloat_FromDouble(__pyx_v_ll); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 77; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __pyx_t_3 = PyFloat_FromDouble(__pyx_v_ll); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 81; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); - __pyx_t_4 = __Pyx_PyObject_GetAttrStr(((PyObject *)__pyx_v_probs_nv), __pyx_n_s_sum); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 77; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_4); + __pyx_t_5 = __Pyx_PyObject_GetAttrStr(((PyObject *)__pyx_v_probs_nv), __pyx_n_s_sum); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 81; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __Pyx_GOTREF(__pyx_t_5); __pyx_t_6 = NULL; - if (CYTHON_COMPILING_IN_CPYTHON && likely(PyMethod_Check(__pyx_t_4))) { - __pyx_t_6 = PyMethod_GET_SELF(__pyx_t_4); + if (CYTHON_COMPILING_IN_CPYTHON && likely(PyMethod_Check(__pyx_t_5))) { + __pyx_t_6 = PyMethod_GET_SELF(__pyx_t_5); if (likely(__pyx_t_6)) { - PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_4); + PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_5); __Pyx_INCREF(__pyx_t_6); __Pyx_INCREF(function); - __Pyx_DECREF_SET(__pyx_t_4, function); + __Pyx_DECREF_SET(__pyx_t_5, function); } } if (__pyx_t_6) { - __pyx_t_5 = __Pyx_PyObject_CallOneArg(__pyx_t_4, __pyx_t_6); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 77; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __pyx_t_4 = __Pyx_PyObject_CallOneArg(__pyx_t_5, __pyx_t_6); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 81; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; } else { - __pyx_t_5 = __Pyx_PyObject_CallNoArg(__pyx_t_4); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 77; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __pyx_t_4 = __Pyx_PyObject_CallNoArg(__pyx_t_5); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 81; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } - __Pyx_GOTREF(__pyx_t_5); - __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; - __pyx_t_4 = PyNumber_InPlaceAdd(__pyx_t_3, __pyx_t_5); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 77; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); - __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; - __pyx_t_22 = __pyx_PyFloat_AsDouble(__pyx_t_4); if (unlikely((__pyx_t_22 == (npy_double)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 77; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __pyx_t_5 = PyNumber_InPlaceAdd(__pyx_t_3, __pyx_t_4); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 81; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __Pyx_GOTREF(__pyx_t_5); + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; - __pyx_v_ll = __pyx_t_22; + __pyx_t_24 = __pyx_PyFloat_AsDouble(__pyx_t_5); if (unlikely((__pyx_t_24 == (npy_double)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 81; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; + __pyx_v_ll = __pyx_t_24; - /* "ml.pyx":80 + /* "ml.pyx":84 * * # print 'probs', probs * max_beta_add = float('-inf') # <<<<<<<<<<<<<< * # iterate over all victim nodes to find the optimal threshold - * for beta in np.arange(0.001, .1, .001): + * for beta in [0.13]:#np.arange(0.001, .2, .002): */ - __pyx_t_26 = __Pyx_PyObject_AsDouble(__pyx_kp_s_inf); if (unlikely(__pyx_t_26 == ((double)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 80; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __pyx_t_4 = PyFloat_FromDouble(__pyx_t_26); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 80; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_4); - __pyx_v_max_beta_add = __pyx_t_4; - __pyx_t_4 = 0; + __pyx_t_27 = __Pyx_PyObject_AsDouble(__pyx_kp_s_inf); if (unlikely(__pyx_t_27 == ((double)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 84; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __pyx_t_5 = PyFloat_FromDouble(__pyx_t_27); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 84; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __Pyx_GOTREF(__pyx_t_5); + __pyx_v_max_beta_add = __pyx_t_5; + __pyx_t_5 = 0; - /* "ml.pyx":82 + /* "ml.pyx":86 * max_beta_add = float('-inf') * # iterate over all victim nodes to find the optimal threshold - * for beta in np.arange(0.001, .1, .001): # <<<<<<<<<<<<<< + * for beta in [0.13]:#np.arange(0.001, .2, .002): # <<<<<<<<<<<<<< * thresh = log(beta/(1.-beta)) * # print 'beta:', beta, 'thresh:', thresh, 'infected:', len(probs[probs>=thresh]) */ - __pyx_t_4 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 82; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_4); - __pyx_t_5 = __Pyx_PyObject_GetAttrStr(__pyx_t_4, __pyx_n_s_arange); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 82; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_5); - __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; - __pyx_t_4 = __Pyx_PyObject_Call(__pyx_t_5, __pyx_tuple_, NULL); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 82; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_4); - __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; - if (likely(PyList_CheckExact(__pyx_t_4)) || PyTuple_CheckExact(__pyx_t_4)) { - __pyx_t_5 = __pyx_t_4; __Pyx_INCREF(__pyx_t_5); __pyx_t_1 = 0; - __pyx_t_27 = NULL; - } else { - __pyx_t_1 = -1; __pyx_t_5 = PyObject_GetIter(__pyx_t_4); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 82; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_5); - __pyx_t_27 = Py_TYPE(__pyx_t_5)->tp_iternext; if (unlikely(!__pyx_t_27)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 82; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - } - __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; + __pyx_t_5 = __pyx_tuple_; __Pyx_INCREF(__pyx_t_5); __pyx_t_2 = 0; for (;;) { - if (likely(!__pyx_t_27)) { - if (likely(PyList_CheckExact(__pyx_t_5))) { - if (__pyx_t_1 >= PyList_GET_SIZE(__pyx_t_5)) break; - #if CYTHON_COMPILING_IN_CPYTHON - __pyx_t_4 = PyList_GET_ITEM(__pyx_t_5, __pyx_t_1); __Pyx_INCREF(__pyx_t_4); __pyx_t_1++; if (unlikely(0 < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 82; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - #else - __pyx_t_4 = PySequence_ITEM(__pyx_t_5, __pyx_t_1); __pyx_t_1++; if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 82; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - #endif - } else { - if (__pyx_t_1 >= PyTuple_GET_SIZE(__pyx_t_5)) break; - #if CYTHON_COMPILING_IN_CPYTHON - __pyx_t_4 = PyTuple_GET_ITEM(__pyx_t_5, __pyx_t_1); __Pyx_INCREF(__pyx_t_4); __pyx_t_1++; if (unlikely(0 < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 82; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - #else - __pyx_t_4 = PySequence_ITEM(__pyx_t_5, __pyx_t_1); __pyx_t_1++; if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 82; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - #endif - } - } else { - __pyx_t_4 = __pyx_t_27(__pyx_t_5); - if (unlikely(!__pyx_t_4)) { - PyObject* exc_type = PyErr_Occurred(); - if (exc_type) { - if (likely(exc_type == PyExc_StopIteration || PyErr_GivenExceptionMatches(exc_type, PyExc_StopIteration))) PyErr_Clear(); - else {__pyx_filename = __pyx_f[0]; __pyx_lineno = 82; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - } - break; - } - __Pyx_GOTREF(__pyx_t_4); - } - __pyx_t_22 = __pyx_PyFloat_AsDouble(__pyx_t_4); if (unlikely((__pyx_t_22 == (npy_double)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 82; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + if (__pyx_t_2 >= 1) break; + #if CYTHON_COMPILING_IN_CPYTHON + __pyx_t_4 = PyTuple_GET_ITEM(__pyx_t_5, __pyx_t_2); __Pyx_INCREF(__pyx_t_4); __pyx_t_2++; if (unlikely(0 < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 86; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + #else + __pyx_t_4 = PySequence_ITEM(__pyx_t_5, __pyx_t_2); __pyx_t_2++; if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 86; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + #endif + __pyx_t_24 = __pyx_PyFloat_AsDouble(__pyx_t_4); if (unlikely((__pyx_t_24 == (npy_double)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 86; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; - __pyx_v_beta = __pyx_t_22; + __pyx_v_beta = __pyx_t_24; - /* "ml.pyx":83 + /* "ml.pyx":87 * # iterate over all victim nodes to find the optimal threshold - * for beta in np.arange(0.001, .1, .001): + * for beta in [0.13]:#np.arange(0.001, .2, .002): * thresh = log(beta/(1.-beta)) # <<<<<<<<<<<<<< * # print 'beta:', beta, 'thresh:', thresh, 'infected:', len(probs[probs>=thresh]) * roots = n_roots + len(probs[probs<thresh]) */ __pyx_v_thresh = log((__pyx_v_beta / (1. - __pyx_v_beta))); - /* "ml.pyx":85 + /* "ml.pyx":89 * thresh = log(beta/(1.-beta)) * # print 'beta:', beta, 'thresh:', thresh, 'infected:', len(probs[probs>=thresh]) * roots = n_roots + len(probs[probs<thresh]) # <<<<<<<<<<<<<< * * # add probability for realized edges and subtract probability these edges fail */ - __pyx_t_4 = PyFloat_FromDouble(__pyx_v_thresh); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 85; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __pyx_t_4 = PyFloat_FromDouble(__pyx_v_thresh); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 89; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); - __pyx_t_3 = PyObject_RichCompare(((PyObject *)__pyx_v_probs), __pyx_t_4, Py_LT); __Pyx_XGOTREF(__pyx_t_3); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 85; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __pyx_t_3 = PyObject_RichCompare(((PyObject *)__pyx_v_probs), __pyx_t_4, Py_LT); __Pyx_XGOTREF(__pyx_t_3); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 89; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; - __pyx_t_4 = PyObject_GetItem(((PyObject *)__pyx_v_probs), __pyx_t_3); if (unlikely(__pyx_t_4 == NULL)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 85; __pyx_clineno = __LINE__; goto __pyx_L1_error;}; + __pyx_t_4 = PyObject_GetItem(((PyObject *)__pyx_v_probs), __pyx_t_3); if (unlikely(__pyx_t_4 == NULL)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 89; __pyx_clineno = __LINE__; goto __pyx_L1_error;}; __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; - __pyx_t_2 = PyObject_Length(__pyx_t_4); if (unlikely(__pyx_t_2 == -1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 85; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __pyx_t_1 = PyObject_Length(__pyx_t_4); if (unlikely(__pyx_t_1 == -1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 89; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; - __pyx_v_roots = (__pyx_v_n_roots + __pyx_t_2); + __pyx_v_roots = (__pyx_v_n_roots + __pyx_t_1); - /* "ml.pyx":88 + /* "ml.pyx":92 * * # add probability for realized edges and subtract probability these edges fail * beta_add = (probs[probs>=thresh]).sum() # <<<<<<<<<<<<<< * # add probability for the seeds and non-seeds - * beta_add += roots * log(beta) + (n_nodes-roots) * log(1 - beta) + * beta_add += roots * log(beta) + (n_nodes-roots) * log(1. - beta) */ - __pyx_t_3 = PyFloat_FromDouble(__pyx_v_thresh); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 88; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __pyx_t_3 = PyFloat_FromDouble(__pyx_v_thresh); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 92; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); - __pyx_t_6 = PyObject_RichCompare(((PyObject *)__pyx_v_probs), __pyx_t_3, Py_GE); __Pyx_XGOTREF(__pyx_t_6); if (unlikely(!__pyx_t_6)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 88; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __pyx_t_6 = PyObject_RichCompare(((PyObject *)__pyx_v_probs), __pyx_t_3, Py_GE); __Pyx_XGOTREF(__pyx_t_6); if (unlikely(!__pyx_t_6)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 92; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; - __pyx_t_3 = PyObject_GetItem(((PyObject *)__pyx_v_probs), __pyx_t_6); if (unlikely(__pyx_t_3 == NULL)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 88; __pyx_clineno = __LINE__; goto __pyx_L1_error;}; + __pyx_t_3 = PyObject_GetItem(((PyObject *)__pyx_v_probs), __pyx_t_6); if (unlikely(__pyx_t_3 == NULL)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 92; __pyx_clineno = __LINE__; goto __pyx_L1_error;}; __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; - __pyx_t_6 = __Pyx_PyObject_GetAttrStr(__pyx_t_3, __pyx_n_s_sum); if (unlikely(!__pyx_t_6)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 88; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __pyx_t_6 = __Pyx_PyObject_GetAttrStr(__pyx_t_3, __pyx_n_s_sum); if (unlikely(!__pyx_t_6)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 92; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_6); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_3 = NULL; @@ -2671,56 +2818,56 @@ static PyObject *__pyx_pf_2ml_ml(CYTHON_UNUSED PyObject *__pyx_self, PyObject *_ } } if (__pyx_t_3) { - __pyx_t_4 = __Pyx_PyObject_CallOneArg(__pyx_t_6, __pyx_t_3); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 88; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __pyx_t_4 = __Pyx_PyObject_CallOneArg(__pyx_t_6, __pyx_t_3); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 92; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; } else { - __pyx_t_4 = __Pyx_PyObject_CallNoArg(__pyx_t_6); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 88; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __pyx_t_4 = __Pyx_PyObject_CallNoArg(__pyx_t_6); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 92; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; __Pyx_XDECREF_SET(__pyx_v_beta_add, __pyx_t_4); __pyx_t_4 = 0; - /* "ml.pyx":90 + /* "ml.pyx":94 * beta_add = (probs[probs>=thresh]).sum() * # add probability for the seeds and non-seeds - * beta_add += roots * log(beta) + (n_nodes-roots) * log(1 - beta) # <<<<<<<<<<<<<< + * beta_add += roots * log(beta) + (n_nodes-roots) * log(1. - beta) # <<<<<<<<<<<<<< * * if beta_add > max_beta_add: */ - __pyx_t_4 = PyFloat_FromDouble(((__pyx_v_roots * log(__pyx_v_beta)) + ((__pyx_v_n_nodes - __pyx_v_roots) * log((1.0 - __pyx_v_beta))))); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 90; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __pyx_t_4 = PyFloat_FromDouble(((__pyx_v_roots * log(__pyx_v_beta)) + ((__pyx_v_n_nodes - __pyx_v_roots) * log((1. - __pyx_v_beta))))); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 94; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); - __pyx_t_6 = PyNumber_InPlaceAdd(__pyx_v_beta_add, __pyx_t_4); if (unlikely(!__pyx_t_6)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 90; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __pyx_t_6 = PyNumber_InPlaceAdd(__pyx_v_beta_add, __pyx_t_4); if (unlikely(!__pyx_t_6)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 94; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_6); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __Pyx_DECREF_SET(__pyx_v_beta_add, __pyx_t_6); __pyx_t_6 = 0; - /* "ml.pyx":92 - * beta_add += roots * log(beta) + (n_nodes-roots) * log(1 - beta) + /* "ml.pyx":96 + * beta_add += roots * log(beta) + (n_nodes-roots) * log(1. - beta) * * if beta_add > max_beta_add: # <<<<<<<<<<<<<< * max_beta = beta * max_roots = roots */ - __pyx_t_6 = PyObject_RichCompare(__pyx_v_beta_add, __pyx_v_max_beta_add, Py_GT); __Pyx_XGOTREF(__pyx_t_6); if (unlikely(!__pyx_t_6)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 92; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __pyx_t_28 = __Pyx_PyObject_IsTrue(__pyx_t_6); if (unlikely(__pyx_t_28 < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 92; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __pyx_t_6 = PyObject_RichCompare(__pyx_v_beta_add, __pyx_v_max_beta_add, Py_GT); __Pyx_XGOTREF(__pyx_t_6); if (unlikely(!__pyx_t_6)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 96; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __pyx_t_28 = __Pyx_PyObject_IsTrue(__pyx_t_6); if (unlikely(__pyx_t_28 < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 96; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; if (__pyx_t_28) { - /* "ml.pyx":93 + /* "ml.pyx":97 * * if beta_add > max_beta_add: * max_beta = beta # <<<<<<<<<<<<<< * max_roots = roots * max_beta_add = beta_add */ - __pyx_t_6 = PyFloat_FromDouble(__pyx_v_beta); if (unlikely(!__pyx_t_6)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 93; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __pyx_t_6 = PyFloat_FromDouble(__pyx_v_beta); if (unlikely(!__pyx_t_6)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 97; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_6); __Pyx_XDECREF_SET(__pyx_v_max_beta, __pyx_t_6); __pyx_t_6 = 0; - /* "ml.pyx":94 + /* "ml.pyx":98 * if beta_add > max_beta_add: * max_beta = beta * max_roots = roots # <<<<<<<<<<<<<< @@ -2729,7 +2876,7 @@ static PyObject *__pyx_pf_2ml_ml(CYTHON_UNUSED PyObject *__pyx_self, PyObject *_ */ __pyx_v_max_roots = __pyx_v_roots; - /* "ml.pyx":95 + /* "ml.pyx":99 * max_beta = beta * max_roots = roots * max_beta_add = beta_add # <<<<<<<<<<<<<< @@ -2738,37 +2885,37 @@ static PyObject *__pyx_pf_2ml_ml(CYTHON_UNUSED PyObject *__pyx_self, PyObject *_ */ __Pyx_INCREF(__pyx_v_beta_add); __Pyx_DECREF_SET(__pyx_v_max_beta_add, __pyx_v_beta_add); - goto __pyx_L15; + goto __pyx_L21; } - __pyx_L15:; + __pyx_L21:; - /* "ml.pyx":82 + /* "ml.pyx":86 * max_beta_add = float('-inf') * # iterate over all victim nodes to find the optimal threshold - * for beta in np.arange(0.001, .1, .001): # <<<<<<<<<<<<<< + * for beta in [0.13]:#np.arange(0.001, .2, .002): # <<<<<<<<<<<<<< * thresh = log(beta/(1.-beta)) * # print 'beta:', beta, 'thresh:', thresh, 'infected:', len(probs[probs>=thresh]) */ } __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; - /* "ml.pyx":98 + /* "ml.pyx":102 * # print 'beta:', max_beta, 'add:', max_beta_add, 'roots:', max_roots * * ll += max_beta_add # <<<<<<<<<<<<<< * roots = max_roots * beta = max_beta */ - __pyx_t_5 = PyFloat_FromDouble(__pyx_v_ll); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 98; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __pyx_t_5 = PyFloat_FromDouble(__pyx_v_ll); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 102; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); - __pyx_t_6 = PyNumber_InPlaceAdd(__pyx_t_5, __pyx_v_max_beta_add); if (unlikely(!__pyx_t_6)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 98; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __pyx_t_6 = PyNumber_InPlaceAdd(__pyx_t_5, __pyx_v_max_beta_add); if (unlikely(!__pyx_t_6)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 102; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_6); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; - __pyx_t_22 = __pyx_PyFloat_AsDouble(__pyx_t_6); if (unlikely((__pyx_t_22 == (npy_double)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 98; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __pyx_t_24 = __pyx_PyFloat_AsDouble(__pyx_t_6); if (unlikely((__pyx_t_24 == (npy_double)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 102; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; - __pyx_v_ll = __pyx_t_22; + __pyx_v_ll = __pyx_t_24; - /* "ml.pyx":99 + /* "ml.pyx":103 * * ll += max_beta_add * roots = max_roots # <<<<<<<<<<<<<< @@ -2777,30 +2924,30 @@ static PyObject *__pyx_pf_2ml_ml(CYTHON_UNUSED PyObject *__pyx_self, PyObject *_ */ __pyx_v_roots = __pyx_v_max_roots; - /* "ml.pyx":100 + /* "ml.pyx":104 * ll += max_beta_add * roots = max_roots * beta = max_beta # <<<<<<<<<<<<<< * # print n_nodes, n_roots, n_victims, max_i, roots * return (beta, roots, ll) */ - if (unlikely(!__pyx_v_max_beta)) { __Pyx_RaiseUnboundLocalError("max_beta"); {__pyx_filename = __pyx_f[0]; __pyx_lineno = 100; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } - __pyx_t_22 = __pyx_PyFloat_AsDouble(__pyx_v_max_beta); if (unlikely((__pyx_t_22 == (npy_double)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 100; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __pyx_v_beta = __pyx_t_22; + if (unlikely(!__pyx_v_max_beta)) { __Pyx_RaiseUnboundLocalError("max_beta"); {__pyx_filename = __pyx_f[0]; __pyx_lineno = 104; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } + __pyx_t_24 = __pyx_PyFloat_AsDouble(__pyx_v_max_beta); if (unlikely((__pyx_t_24 == (npy_double)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 104; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __pyx_v_beta = __pyx_t_24; - /* "ml.pyx":102 + /* "ml.pyx":106 * beta = max_beta * # print n_nodes, n_roots, n_victims, max_i, roots * return (beta, roots, ll) # <<<<<<<<<<<<<< */ __Pyx_XDECREF(__pyx_r); - __pyx_t_6 = PyFloat_FromDouble(__pyx_v_beta); if (unlikely(!__pyx_t_6)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 102; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __pyx_t_6 = PyFloat_FromDouble(__pyx_v_beta); if (unlikely(!__pyx_t_6)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 106; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_6); - __pyx_t_5 = __Pyx_PyInt_From_int(__pyx_v_roots); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 102; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __pyx_t_5 = __Pyx_PyInt_From_int(__pyx_v_roots); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 106; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); - __pyx_t_4 = PyFloat_FromDouble(__pyx_v_ll); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 102; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __pyx_t_4 = PyFloat_FromDouble(__pyx_v_ll); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 106; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); - __pyx_t_3 = PyTuple_New(3); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 102; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __pyx_t_3 = PyTuple_New(3); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 106; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_3); PyTuple_SET_ITEM(__pyx_t_3, 0, __pyx_t_6); __Pyx_GIVEREF(__pyx_t_6); @@ -5127,7 +5274,6 @@ static __Pyx_StringTabEntry __pyx_string_tab[] = { {&__pyx_n_s_ValueError, __pyx_k_ValueError, sizeof(__pyx_k_ValueError), 0, 0, 1, 1}, {&__pyx_n_s_age, __pyx_k_age, sizeof(__pyx_k_age), 0, 0, 1, 1}, {&__pyx_n_s_alpha, __pyx_k_alpha, sizeof(__pyx_k_alpha), 0, 0, 1, 1}, - {&__pyx_n_s_arange, __pyx_k_arange, sizeof(__pyx_k_arange), 0, 0, 1, 1}, {&__pyx_n_s_args, __pyx_k_args, sizeof(__pyx_k_args), 0, 0, 1, 1}, {&__pyx_n_s_beta, __pyx_k_beta, sizeof(__pyx_k_beta), 0, 0, 1, 1}, {&__pyx_n_s_beta_add, __pyx_k_beta_add, sizeof(__pyx_k_beta_add), 0, 0, 1, 1}, @@ -5202,14 +5348,14 @@ static int __Pyx_InitCachedConstants(void) { __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__Pyx_InitCachedConstants", 0); - /* "ml.pyx":82 + /* "ml.pyx":86 * max_beta_add = float('-inf') * # iterate over all victim nodes to find the optimal threshold - * for beta in np.arange(0.001, .1, .001): # <<<<<<<<<<<<<< + * for beta in [0.13]:#np.arange(0.001, .2, .002): # <<<<<<<<<<<<<< * thresh = log(beta/(1.-beta)) * # print 'beta:', beta, 'thresh:', thresh, 'infected:', len(probs[probs>=thresh]) */ - __pyx_tuple_ = PyTuple_Pack(3, __pyx_float_0_001, __pyx_float__1, __pyx_float__001); if (unlikely(!__pyx_tuple_)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 82; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __pyx_tuple_ = PyTuple_Pack(1, __pyx_float_0_13); if (unlikely(!__pyx_tuple_)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 86; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_tuple_); __Pyx_GIVEREF(__pyx_tuple_); @@ -5299,9 +5445,7 @@ static int __Pyx_InitCachedConstants(void) { static int __Pyx_InitGlobals(void) { if (__Pyx_InitStrings(__pyx_string_tab) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1; __pyx_clineno = __LINE__; goto __pyx_L1_error;}; - __pyx_float__1 = PyFloat_FromDouble(.1); if (unlikely(!__pyx_float__1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __pyx_float__001 = PyFloat_FromDouble(.001); if (unlikely(!__pyx_float__001)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __pyx_float_0_001 = PyFloat_FromDouble(0.001); if (unlikely(!__pyx_float_0_001)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __pyx_float_0_13 = PyFloat_FromDouble(0.13); if (unlikely(!__pyx_float_0_13)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1; __pyx_clineno = __LINE__; goto __pyx_L1_error;} return 0; __pyx_L1_error:; return -1; diff --git a/experiments/ml.pyx b/experiments/ml.pyx index 67b561c..e1ce4cf 100644 --- a/experiments/ml.pyx +++ b/experiments/ml.pyx @@ -15,8 +15,8 @@ cdef DTYPE_t weight_success(int dist, int dt, DTYPE_t alpha, DTYPE_t delta, cdef DTYPE_t structural, temporal, result structural = delta ** dist # structural = plogis(w1,delta) * plogis(w2,delta) * plogis(w3,delta) - # temporal = exp(-alpha*dt) * (exp(alpha)-1) - temporal = 1 - exp(-alpha*dt) + temporal = exp(-alpha*dt) * (exp(alpha)-1.) + # temporal = 1 - exp(-alpha*dt) if exp(-alpha*dt)==0.: print 'UNDERFLOW ERROR' # temporal = 1. / (1. + (dt - 1.)/alpha)**0.01 - 1. / (1. + dt/alpha)**0.01 result = log(structural * temporal) @@ -42,7 +42,7 @@ def ml(dict root_victims, dict victims, dict non_victims, DTYPE_t age, DTYPE_t beta, ll list parents, failures, successes n_roots, n_victims = len(root_victims), len(victims) - n_nodes = 11270 + n_nodes = 100 cdef: np.ndarray[DTYPE_t] probs = np.zeros(n_victims, dtype=DTYPE) np.ndarray[DTYPE_t] probs_fail = np.zeros(n_victims, dtype=DTYPE) @@ -62,12 +62,16 @@ def ml(dict root_victims, dict victims, dict non_victims, DTYPE_t age, probs[i] = max(s - failures[l] for l, s in enumerate(successes)) # loop through non-victims - # for i, parents in enumerate(non_victims.itervalues()): - # # for each non victim node, compute the probability that all its - # # parents fail to infect it - # failures = [weight_failure(dist, dt, alpha, delta, w1, w2, w3) - # for (dist, dt, w1, w2, w3) in parents] - # probs_nv[i] = sum(failures) + for i, parents in enumerate(non_victims.itervalues()): + # for each non victim node, compute the probability that all its + # parents fail to infect it + failures = [weight_failure(dist, dt, alpha, delta, w1, w2, w3) + for (dist, dt, w1, w2, w3) in parents] + probs_nv[i] = sum(failures) + + # print successes + # print failures + # print probs # calculate log likelihood # probs.sort(); probs = probs[::-1] # sort probs in descending order @@ -79,7 +83,7 @@ def ml(dict root_victims, dict victims, dict non_victims, DTYPE_t age, # print 'probs', probs max_beta_add = float('-inf') # iterate over all victim nodes to find the optimal threshold - for beta in np.arange(0.001, .1, .001): + for beta in [0.13]:#np.arange(0.001, .2, .002): thresh = log(beta/(1.-beta)) # print 'beta:', beta, 'thresh:', thresh, 'infected:', len(probs[probs>=thresh]) roots = n_roots + len(probs[probs<thresh]) @@ -87,7 +91,7 @@ def ml(dict root_victims, dict victims, dict non_victims, DTYPE_t age, # add probability for realized edges and subtract probability these edges fail beta_add = (probs[probs>=thresh]).sum() # add probability for the seeds and non-seeds - beta_add += roots * log(beta) + (n_nodes-roots) * log(1 - beta) + beta_add += roots * log(beta) + (n_nodes-roots) * log(1. - beta) if beta_add > max_beta_add: max_beta = beta diff --git a/experiments/ml.so b/experiments/ml.so Binary files differindex df7f087..da6fb1f 100755 --- a/experiments/ml.so +++ b/experiments/ml.so diff --git a/experiments/out.log b/experiments/out.log index 7a1f0ab..6b67669 100644 --- a/experiments/out.log +++ b/experiments/out.log @@ -1,50 +1,2500 @@ -0.01 1e-10 0.099 11270 -26063.4012842 -0.01 1e-09 0.099 11270 -26063.4012942 -0.01 1e-08 0.099 11270 -26063.4013936 -0.01 1e-07 0.099 11270 -26063.4023876 -0.01 1e-06 0.099 11270 -26063.4123283 -0.01 1e-05 0.099 11270 -26063.5117423 -0.01 0.0001 0.099 11270 -26064.5065933 -0.01 0.001 0.099 11270 -26074.5266231 -0.01 0.01 0.099 11270 -26182.2819892 -0.01 0.1 0.099 8015 -28388.8683687 -0.1 1e-10 0.099 11270 -26063.4012843 -0.1 1e-09 0.099 11270 -26063.4012953 -0.1 1e-08 0.099 11270 -26063.4014049 -0.1 1e-07 0.099 11270 -26063.4025006 -0.1 1e-06 0.099 11270 -26063.4134578 -0.1 1e-05 0.099 11270 -26063.5230378 -0.1 0.0001 0.099 11270 -26064.6196132 -0.1 0.001 0.099 11270 -26075.6633592 -0.1 0.01 0.099 11270 -26194.3360771 -0.1 0.1 0.099 6661 -28593.8725864 -1.0 1e-10 0.099 11270 -26063.4012843 -1.0 1e-09 0.099 11270 -26063.4012954 -1.0 1e-08 0.099 11270 -26063.4014062 -1.0 1e-07 0.099 11270 -26063.4025142 -1.0 1e-06 0.099 11270 -26063.413594 -1.0 1e-05 0.099 11270 -26063.5244003 -1.0 0.0001 0.099 11270 -26064.6332464 -1.0 0.001 0.099 11270 -26075.8004629 -1.0 0.01 0.099 11270 -26195.7880597 -1.0 0.1 0.099 6497 -28618.0350966 -10.0 1e-10 0.099 11270 -26063.4012843 -10.0 1e-09 0.099 11270 -26063.4012954 -10.0 1e-08 0.099 11270 -26063.4014063 -10.0 1e-07 0.099 11270 -26063.4025152 -10.0 1e-06 0.099 11270 -26063.4136042 -10.0 1e-05 0.099 11270 -26063.5245019 -10.0 0.0001 0.099 11270 -26064.6342626 -10.0 0.001 0.099 11270 -26075.8106807 -10.0 0.01 0.099 11270 -26195.896108 -10.0 0.1 0.099 6478 -28619.7022745 -100.0 1e-10 0.099 11270 -26063.4012843 -100.0 1e-09 0.099 11270 -26063.4012954 -100.0 1e-08 0.099 11270 -26063.4014063 -100.0 1e-07 0.099 11270 -26063.4025152 -100.0 1e-06 0.099 11270 -26063.4136042 -100.0 1e-05 0.099 11270 -26063.5245019 -100.0 0.0001 0.099 11270 -26064.6342627 -100.0 0.001 0.099 11270 -26075.8106816 -100.0 0.01 0.099 11270 -26195.8961172 -100.0 0.1 0.099 6478 -28619.7022344 +0.001 0.001 0.13 20 -52.0832474113 +0.001 0.00112465782212 0.13 20 -52.1005125537 +0.001 0.00126485521686 0.13 20 -52.1199509282 +0.001 0.00142252931349 0.13 20 -52.1418390225 +0.001 0.00159985871961 0.13 20 -52.1664892743 +0.001 0.00179929362329 0.13 20 -52.1942549491 +0.001 0.00202358964773 0.13 20 -52.225535731 +0.001 0.00227584592607 0.13 20 -52.2607841467 +0.001 0.0025595479227 0.13 20 -52.3005129593 +0.001 0.00287861559235 0.13 20 -52.3453037031 +0.001 0.00323745754282 0.13 20 -52.3958165575 +0.001 0.00364103194931 0.13 20 -52.4528018042 +0.001 0.00409491506238 0.13 20 -52.51711316 +0.001 0.00460537825582 0.13 20 -52.589723343 +0.001 0.00517947467923 0.13 20 -52.6717423073 +0.001 0.00582513671247 0.13 20 -52.7644386796 +0.001 0.0065512855686 0.13 20 -52.8692650573 +0.001 0.00736795455966 0.13 20 -52.9878879795 +0.001 0.00828642772855 0.13 20 -53.1222235829 +0.001 0.00931939576234 0.13 20 -53.2744802023 +0.001 0.0104811313415 0.13 20 -53.447209494 +0.001 0.0117876863479 0.13 20 -53.6433680699 +0.001 0.0132571136559 0.13 20 -53.8663921501 +0.001 0.0149097165718 0.13 20 -54.120288421 +0.001 0.0167683293681 0.13 20 -54.4097451574 +0.001 0.0188586327877 0.13 20 -54.7402688054 +0.001 0.0212095088792 0.13 20 -55.1183527117 +0.001 0.0238534400643 0.13 20 -55.5516866311 +0.001 0.0268269579528 0.13 20 -56.0494182218 +0.001 0.0301711481053 0.13 20 -56.6224811403 +0.001 0.033932217719 0.13 20 -57.2840088874 +0.001 0.0381621340795 0.13 20 -58.0498596248 +0.001 0.0429193426013 0.13 20 -58.9392853408 +0.001 0.0482695743768 0.13 20 -59.9757897802 +0.001 0.0542867543932 0.13 20 -61.1882345479 +0.001 0.0610540229659 0.13 20 -62.6122733035 +0.001 0.0686648845004 0.13 20 -64.2922221645 +0.001 0.0772244994584 0.13 20 -66.2835134819 +0.001 0.0868511373751 0.13 20 -68.6559345702 +0.001 0.0976778110089 0.13 20 -71.4979294263 +0.001 0.109854114199 0.13 20 -74.9223497807 +0.001 0.123548288826 0.13 20 -79.0741968175 +0.001 0.138949549437 0.13 20 -84.14111926 +0.001 0.156270697655 0.13 20 -90.3677628212 +0.001 0.175751062485 0.13 20 -98.0755574422 +0.001 0.19765980717 0.13 20 -107.690276966 +0.001 0.222299648253 0.13 20 -119.780873153 +0.001 0.250011038262 0.13 20 -135.114960731 +0.001 0.281176869797 0.13 20 -154.739447493 +0.001 0.316227766017 0.13 20 -180.100201802 +0.00114599750858 0.001 0.13 20 -52.0875591672 +0.00114599750858 0.00112465782212 0.13 20 -52.1053646041 +0.00114599750858 0.00126485521686 0.13 20 -52.1254113682 +0.00114599750858 0.00142252931349 0.13 20 -52.147984633 +0.00114599750858 0.00159985871961 0.13 20 -52.1734066576 +0.00114599750858 0.00179929362329 0.13 20 -52.2020418193 +0.00114599750858 0.00202358964773 0.13 20 -52.2343023842 +0.00114599750858 0.00227584592607 0.13 20 -52.2706551355 +0.00114599750858 0.0025595479227 0.13 20 -52.3116290059 +0.00114599750858 0.00287861559235 0.13 20 -52.3578238865 +0.00114599750858 0.00323745754282 0.13 20 -52.4099208198 +0.00114599750858 0.00364103194931 0.13 20 -52.4686938272 +0.00114599750858 0.00409491506238 0.13 20 -52.5350236761 +0.00114599750858 0.00460537825582 0.13 20 -52.6099139521 +0.00114599750858 0.00517947467923 0.13 20 -52.6945098905 +0.00114599750858 0.00582513671247 0.13 20 -52.790120517 +0.00114599750858 0.0065512855686 0.13 20 -52.8982447782 +0.00114599750858 0.00736795455966 0.13 20 -53.020602505 +0.00114599750858 0.00828642772855 0.13 20 -53.1591712517 +0.00114599750858 0.00931939576234 0.13 20 -53.3162303172 +0.00114599750858 0.0104811313415 0.13 20 -53.4944135799 +0.00114599750858 0.0117876863479 0.13 20 -53.6967732037 +0.00114599750858 0.0132571136559 0.13 20 -53.926856811 +0.00114599750858 0.0149097165718 0.13 20 -54.1888014204 +0.00114599750858 0.0167683293681 0.13 20 -54.4874483518 +0.00114599750858 0.0188586327877 0.13 20 -54.8284844781 +0.00114599750858 0.0212095088792 0.13 20 -55.2186167453 +0.00114599750858 0.0238534400643 0.13 20 -55.6657889016 +0.00114599750858 0.0268269579528 0.13 20 -56.1794520421 +0.00114599750858 0.0301711481053 0.13 20 -56.7709041065 +0.00114599750858 0.033932217719 0.13 20 -57.4537181694 +0.00114599750858 0.0381621340795 0.13 20 -58.2442856537 +0.00114599750858 0.0429193426013 0.13 20 -59.1625090628 +0.00114599750858 0.0482695743768 0.13 20 -60.2326902681 +0.00114599750858 0.0542867543932 0.13 20 -61.4846759586 +0.00114599750858 0.0610540229659 0.13 20 -62.9553431389 +0.00114599750858 0.0686648845004 0.13 20 -64.6905368626 +0.00114599750858 0.0772244994584 0.13 20 -66.7476129599 +0.00114599750858 0.0868511373751 0.13 20 -69.1987951204 +0.00114599750858 0.0976778110089 0.13 20 -72.135635264 +0.00114599750858 0.109854114199 0.13 20 -75.6749789879 +0.00114599750858 0.123548288826 0.13 20 -79.966999556 +0.00114599750858 0.138949549437 0.13 20 -85.2060982908 +0.00114599750858 0.156270697655 0.13 20 -91.6458138505 +0.00114599750858 0.175751062485 0.13 20 -99.619398252 +0.00114599750858 0.19765980717 0.13 20 -109.568504189 +0.00114599750858 0.222299648253 0.13 20 -122.083659148 +0.00114599750858 0.250011038262 0.13 20 -137.962185888 +0.00114599750858 0.281176869797 0.13 20 -158.292541375 +0.00114599750858 0.316227766017 0.13 20 -184.579809615 +0.00131331028968 0.001 0.13 20 -52.0910702252 +0.00131331028968 0.00112465782212 0.13 20 -52.1093156476 +0.00131331028968 0.00126485521686 0.13 20 -52.1298578563 +0.00131331028968 0.00142252931349 0.13 20 -52.1529891007 +0.00131331028968 0.00159985871961 0.13 20 -52.1790396411 +0.00131331028968 0.00179929362329 0.13 20 -52.2083829081 +0.00131331028968 0.00202358964773 0.13 20 -52.2414414189 +0.00131331028968 0.00227584592607 0.13 20 -52.278693574 +0.00131331028968 0.0025595479227 0.13 20 -52.3206814827 +0.00131331028968 0.00287861559235 0.13 20 -52.3680199968 +0.00131331028968 0.00323745754282 0.13 20 -52.4214071636 +0.00131331028968 0.00364103194931 0.13 20 -52.4816363569 +0.00131331028968 0.00409491506238 0.13 20 -52.5496103971 +0.00131331028968 0.00460537825582 0.13 20 -52.626358039 +0.00131331028968 0.00517947467923 0.13 20 -52.7130532903 +0.00131331028968 0.00582513671247 0.13 20 -52.8110381278 +0.00131331028968 0.0065512855686 0.13 20 -52.9218493103 +0.00131331028968 0.00736795455966 0.13 20 -53.0472501527 +0.00131331028968 0.00828642772855 0.13 20 -53.1892683353 +0.00131331028968 0.00931939576234 0.13 20 -53.3502410877 +0.00131331028968 0.0104811313415 0.13 20 -53.532869427 +0.00131331028968 0.0117876863479 0.13 20 -53.7402835618 +0.00131331028968 0.0132571136559 0.13 20 -53.9761221327 +0.00131331028968 0.0149097165718 0.13 20 -54.2446286767 +0.00131331028968 0.0167683293681 0.13 20 -54.5507696374 +0.00131331028968 0.0188586327877 0.13 20 -54.9003794504 +0.00131331028968 0.0212095088792 0.13 20 -55.3003398218 +0.00131331028968 0.0238534400643 0.13 20 -55.7588023917 +0.00131331028968 0.0268269579528 0.13 20 -56.2854667209 +0.00131331028968 0.0301711481053 0.13 20 -56.8919291684 +0.00131331028968 0.033932217719 0.13 20 -57.5921230701 +0.00131331028968 0.0381621340795 0.13 20 -58.4028771003 +0.00131331028968 0.0429193426013 0.13 20 -59.3446274166 +0.00131331028968 0.0482695743768 0.13 20 -60.4423309699 +0.00131331028968 0.0542867543932 0.13 20 -61.7266433958 +0.00131331028968 0.0610540229659 0.13 20 -63.2354468411 +0.00131331028968 0.0686648845004 0.13 20 -65.015843274 +0.00131331028968 0.0772244994584 0.13 20 -67.1267706788 +0.00131331028968 0.0868511373751 0.13 20 -69.6424579445 +0.00131331028968 0.0976778110089 0.13 20 -72.657016427 +0.00131331028968 0.109854114199 0.13 20 -76.2905827992 +0.00131331028968 0.123548288826 0.13 20 -80.6975950572 +0.00131331028968 0.138949549437 0.13 20 -86.0780263122 +0.00131331028968 0.156270697655 0.13 20 -92.6927584249 +0.00131331028968 0.175751062485 0.13 20 -100.884812969 +0.00131331028968 0.19765980717 0.13 20 -111.108975966 +0.00131331028968 0.222299648253 0.13 20 -123.973637343 +0.00131331028968 0.250011038262 0.13 20 -140.30074227 +0.00131331028968 0.281176869797 0.13 20 -161.213229185 +0.00131331028968 0.316227766017 0.13 20 -188.265402555 +0.00150505031997 0.001 0.13 20 -52.0938240958 +0.00150505031997 0.00112465782212 0.13 20 -52.1124146374 +0.00150505031997 0.00126485521686 0.13 20 -52.1333454722 +0.00150505031997 0.00142252931349 0.13 20 -52.1569144017 +0.00150505031997 0.00159985871961 0.13 20 -52.183457965 +0.00150505031997 0.00179929362329 0.13 20 -52.2133566977 +0.00150505031997 0.00202358964773 0.13 20 -52.2470411623 +0.00150505031997 0.00227584592607 0.13 20 -52.2849988777 +0.00150505031997 0.0025595479227 0.13 20 -52.3277822964 +0.00150505031997 0.00287861559235 0.13 20 -52.3760180152 +0.00150505031997 0.00323745754282 0.13 20 -52.4304174323 +0.00150505031997 0.00364103194931 0.13 20 -52.4917891176 +0.00150505031997 0.00409491506238 0.13 20 -52.5610532105 +0.00150505031997 0.00460537825582 0.13 20 -52.6392582351 +0.00150505031997 0.00517947467923 0.13 20 -52.7276008021 +0.00150505031997 0.00582513671247 0.13 20 -52.8274487789 +0.00150505031997 0.0065512855686 0.13 20 -52.9403686398 +0.00150505031997 0.00736795455966 0.13 20 -53.0681578803 +0.00150505031997 0.00828642772855 0.13 20 -53.2128835911 +0.00150505031997 0.00931939576234 0.13 20 -53.3769285605 +0.00150505031997 0.0104811313415 0.13 20 -53.5630466199 +0.00150505031997 0.0117876863479 0.13 20 -53.7744293898 +0.00150505031997 0.0132571136559 0.13 20 -54.0147871538 +0.00150505031997 0.0149097165718 0.13 20 -54.2884473214 +0.00150505031997 0.0167683293681 0.13 20 -54.6004748942 +0.00150505031997 0.0188586327877 0.13 20 -54.9568205856 +0.00150505031997 0.0212095088792 0.13 20 -55.3645038665 +0.00150505031997 0.0238534400643 0.13 20 -55.8318403305 +0.00150505031997 0.0268269579528 0.13 20 -56.3687255782 +0.00150505031997 0.0301711481053 0.13 20 -56.9869915326 +0.00150505031997 0.033932217719 0.13 20 -57.7008560482 +0.00150505031997 0.0381621340795 0.13 20 -58.5274932959 +0.00150505031997 0.0429193426013 0.13 20 -59.4877613228 +0.00150505031997 0.0482695743768 0.13 20 -60.60713524 +0.00150505031997 0.0542867543932 0.13 20 -61.9169109017 +0.00150505031997 0.0610540229659 0.13 20 -63.4557663901 +0.00150505031997 0.0686648845004 0.13 20 -65.2717995426 +0.00150505031997 0.0772244994584 0.13 20 -67.4252026248 +0.00150505031997 0.0868511373751 0.13 20 -69.9917951071 +0.00150505031997 0.0976778110089 0.13 20 -73.0677197514 +0.00150505031997 0.109854114199 0.13 20 -76.7757268704 +0.00150505031997 0.123548288826 0.13 20 -81.2736433398 +0.00150505031997 0.138949549437 0.13 20 -86.7658723992 +0.00150505031997 0.156270697655 0.13 20 -93.5191379634 +0.00150505031997 0.175751062485 0.13 20 -101.884238663 +0.00150505031997 0.19765980717 0.13 20 -112.326421675 +0.00150505031997 0.222299648253 0.13 20 -125.468313889 +0.00150505031997 0.250011038262 0.13 20 -142.151498275 +0.00150505031997 0.281176869797 0.13 20 -163.526433825 +0.00150505031997 0.316227766017 0.13 20 -191.186740753 +0.00172478391698 0.001 0.13 20 -52.0959088489 +0.00172478391698 0.00112465782212 0.13 20 -52.1147606719 +0.00172478391698 0.00126485521686 0.13 20 -52.1359857305 +0.00172478391698 0.00142252931349 0.13 20 -52.1598860315 +0.00172478391698 0.00159985871961 0.13 20 -52.1868028697 +0.00172478391698 0.00179929362329 0.13 20 -52.2171221625 +0.00172478391698 0.00202358964773 0.13 20 -52.2512805676 +0.00172478391698 0.00227584592607 0.13 20 -52.2897725119 +0.00172478391698 0.0025595479227 0.13 20 -52.3331582853 +0.00172478391698 0.00287861559235 0.13 20 -52.3820733843 +0.00172478391698 0.00323745754282 0.13 20 -52.4372393258 +0.00172478391698 0.00364103194931 0.13 20 -52.4994761978 +0.00172478391698 0.00409491506238 0.13 20 -52.5697172695 +0.00172478391698 0.00460537825582 0.13 20 -52.6490260543 +0.00172478391698 0.00517947467923 0.13 20 -52.738616304 +0.00172478391698 0.00582513671247 0.13 20 -52.8398755244 +0.00172478391698 0.0065512855686 0.13 20 -52.9543927344 +0.00172478391698 0.00736795455966 0.13 20 -53.0839913679 +0.00172478391698 0.00828642772855 0.13 20 -53.2307684304 +0.00172478391698 0.00931939576234 0.13 20 -53.3971413019 +0.00172478391698 0.0104811313415 0.13 20 -53.5859039268 +0.00172478391698 0.0117876863479 0.13 20 -53.8002945844 +0.00172478391698 0.0132571136559 0.13 20 -54.0440780095 +0.00172478391698 0.0149097165718 0.13 20 -54.3216453823 +0.00172478391698 0.0167683293681 0.13 20 -54.6381366714 +0.00172478391698 0.0188586327877 0.13 20 -54.9995910741 +0.00172478391698 0.0212095088792 0.13 20 -55.4131329447 +0.00172478391698 0.0238534400643 0.13 20 -55.8872027585 +0.00172478391698 0.0268269579528 0.13 20 -56.4318455134 +0.00172478391698 0.0301711481053 0.13 20 -57.0590727458 +0.00172478391698 0.033932217719 0.13 20 -57.7833193699 +0.00172478391698 0.0381621340795 0.13 20 -58.6220232873 +0.00172478391698 0.0429193426013 0.13 20 -59.5963647781 +0.00172478391698 0.0482695743768 0.13 20 -60.7322149548 +0.00172478391698 0.0542867543932 0.13 20 -62.0613592545 +0.00172478391698 0.0610540229659 0.13 20 -63.6230847981 +0.00172478391698 0.0686648845004 0.13 20 -65.4662519231 +0.00172478391698 0.0772244994584 0.13 20 -67.652013849 +0.00172478391698 0.0868511373751 0.13 20 -70.257409403 +0.00172478391698 0.0976778110089 0.13 20 -73.3801395848 +0.00172478391698 0.109854114199 0.13 20 -77.1449607338 +0.00172478391698 0.123548288826 0.13 20 -81.7123022169 +0.00172478391698 0.138949549437 0.13 20 -87.2899711686 +0.00172478391698 0.156270697655 0.13 20 -94.1491823894 +0.00172478391698 0.175751062485 0.13 20 -102.646715366 +0.00172478391698 0.19765980717 0.13 20 -113.255865097 +0.00172478391698 0.222299648253 0.13 20 -126.610213923 +0.00172478391698 0.250011038262 0.13 20 -143.566458693 +0.00172478391698 0.281176869797 0.13 20 -165.296240123 +0.00172478391698 0.316227766017 0.13 20 -193.423436243 +0.0019765980717 0.001 0.13 20 -52.0974431014 +0.0019765980717 0.00112465782212 0.13 20 -52.1164872261 +0.0019765980717 0.00126485521686 0.13 20 -52.1379288354 +0.0019765980717 0.00142252931349 0.13 20 -52.1620730331 +0.0019765980717 0.00159985871961 0.13 20 -52.1892646158 +0.0019765980717 0.00179929362329 0.13 20 -52.2198934645 +0.0019765980717 0.00202358964773 0.13 20 -52.2544007263 +0.0019765980717 0.00227584592607 0.13 20 -52.2932859164 +0.0019765980717 0.0025595479227 0.13 20 -52.3371150983 +0.0019765980717 0.00287861559235 0.13 20 -52.3865303261 +0.0019765980717 0.00323745754282 0.13 20 -52.442260573 +0.0019765980717 0.00364103194931 0.13 20 -52.5051344158 +0.0019765980717 0.00409491506238 0.13 20 -52.5760948021 +0.0019765980717 0.00460537825582 0.13 20 -52.6562162965 +0.0019765980717 0.00517947467923 0.13 20 -52.7467252916 +0.0019765980717 0.00582513671247 0.13 20 -52.8490237782 +0.0019765980717 0.0065512855686 0.13 20 -52.9647174087 +0.0019765980717 0.00736795455966 0.13 20 -53.0956487592 +0.0019765980717 0.00828642772855 0.13 20 -53.2439369193 +0.0019765980717 0.00931939576234 0.13 20 -53.4120248137 +0.0019765980717 0.0104811313415 0.13 20 -53.6027360197 +0.0019765980717 0.0117876863479 0.13 20 -53.8193432981 +0.0019765980717 0.0132571136559 0.13 20 -54.0656516414 +0.0019765980717 0.0149097165718 0.13 20 -54.3460993981 +0.0019765980717 0.0167683293681 0.13 20 -54.6658820136 +0.0019765980717 0.0188586327877 0.13 20 -55.0311041983 +0.0019765980717 0.0212095088792 0.13 20 -55.4489680031 +0.0019765980717 0.0238534400643 0.13 20 -55.9280064676 +0.0019765980717 0.0268269579528 0.13 20 -56.4783753921 +0.0019765980717 0.0301711481053 0.13 20 -57.1122196085 +0.0019765980717 0.033932217719 0.13 20 -57.8441352223 +0.0019765980717 0.0381621340795 0.13 20 -58.6917561165 +0.0019765980717 0.0429193426013 0.13 20 -59.6765021931 +0.0019765980717 0.0482695743768 0.13 20 -60.8245392525 +0.0019765980717 0.0542867543932 0.13 20 -62.1680173223 +0.0019765980717 0.0610540229659 0.13 20 -63.7466774023 +0.0019765980717 0.0686648845004 0.13 20 -65.6099484881 +0.0019765980717 0.0772244994584 0.13 20 -67.8197009751 +0.0019765980717 0.0868511373751 0.13 20 -70.4538843554 +0.0019765980717 0.0976778110089 0.13 20 -73.6113641651 +0.0019765980717 0.109854114199 0.13 20 -77.4183968755 +0.0019765980717 0.123548288826 0.13 20 -82.037359141 +0.0019765980717 0.138949549437 0.13 20 -87.6786062844 +0.0019765980717 0.156270697655 0.13 20 -94.6167163515 +0.0019765980717 0.175751062485 0.13 20 -103.212949114 +0.0019765980717 0.19765980717 0.13 20 -113.94662887 +0.0019765980717 0.222299648253 0.13 20 -127.459544826 +0.0019765980717 0.250011038262 0.13 20 -144.619711933 +0.0019765980717 0.281176869797 0.13 20 -166.614622608 +0.0019765980717 0.316227766017 0.13 20 -195.090775578 +0.00226517646564 0.001 0.13 20 -52.0985576278 +0.00226517646564 0.00112465782212 0.13 20 -52.1177414577 +0.00226517646564 0.00126485521686 0.13 20 -52.1393403923 +0.00226517646564 0.00142252931349 0.13 20 -52.1636617859 +0.00226517646564 0.00159985871961 0.13 20 -52.1910529812 +0.00226517646564 0.00179929362329 0.13 20 -52.2219067407 +0.00226517646564 0.00202358964773 0.13 20 -52.2566674753 +0.00226517646564 0.00227584592607 0.13 20 -52.2958384008 +0.00226517646564 0.0025595479227 0.13 20 -52.3399897796 +0.00226517646564 0.00287861559235 0.13 20 -52.3897684354 +0.00226517646564 0.00323745754282 0.13 20 -52.4459087657 +0.00226517646564 0.00364103194931 0.13 20 -52.5092455242 +0.00226517646564 0.00409491506238 0.13 20 -52.5807287021 +0.00226517646564 0.00460537825582 0.13 20 -52.6614409083 +0.00226517646564 0.00517947467923 0.13 20 -52.752617739 +0.00226517646564 0.00582513671247 0.13 20 -52.8556717347 +0.00226517646564 0.0065512855686 0.13 20 -52.972220665 +0.00226517646564 0.00736795455966 0.13 20 -53.104121056 +0.00226517646564 0.00828642772855 0.13 20 -53.2535080959 +0.00226517646564 0.00931939576234 0.13 20 -53.4228433386 +0.00226517646564 0.0104811313415 0.13 20 -53.6149719806 +0.00226517646564 0.0117876863479 0.13 20 -53.8331919507 +0.00226517646564 0.0132571136559 0.13 20 -54.0813376392 +0.00226517646564 0.0149097165718 0.13 20 -54.3638818575 +0.00226517646564 0.0167683293681 0.13 20 -54.6860606062 +0.00226517646564 0.0188586327877 0.13 20 -55.0540265167 +0.00226517646564 0.0212095088792 0.13 20 -55.4750385088 +0.00226517646564 0.0238534400643 0.13 20 -55.9576974189 +0.00226517646564 0.0268269579528 0.13 20 -56.512240259 +0.00226517646564 0.0301711481053 0.13 20 -57.1509096325 +0.00226517646564 0.033932217719 0.13 20 -57.8884199688 +0.00226517646564 0.0381621340795 0.13 20 -58.7425491293 +0.00226517646564 0.0429193426013 0.13 20 -59.7348932018 +0.00226517646564 0.0482695743768 0.13 20 -60.8918348452 +0.00226517646564 0.0542867543932 0.13 20 -62.2457926207 +0.00226517646564 0.0610540229659 0.13 20 -63.8368421191 +0.00226517646564 0.0686648845004 0.13 20 -65.7148319074 +0.00226517646564 0.0772244994584 0.13 20 -67.9421619912 +0.00226517646564 0.0868511373751 0.13 20 -70.5974549215 +0.00226517646564 0.0976778110089 0.13 20 -73.7804376124 +0.00226517646564 0.109854114199 0.13 20 -77.6184769587 +0.00226517646564 0.123548288826 0.13 20 -82.2753919652 +0.00226517646564 0.138949549437 0.13 20 -87.9634263939 +0.00226517646564 0.156270697655 0.13 20 -94.9596517098 +0.00226517646564 0.175751062485 0.13 20 -103.628649861 +0.00226517646564 0.19765980717 0.13 20 -114.454215639 +0.00226517646564 0.222299648253 0.13 20 -128.084221008 +0.00226517646564 0.250011038262 0.13 20 -145.395063091 +0.00226517646564 0.281176869797 0.13 20 -167.585958934 +0.00226517646564 0.316227766017 0.13 20 -196.320106367 +0.00259588658613 0.001 0.13 20 -52.0993768424 +0.00259588658613 0.00112465782212 0.13 20 -52.118663369 +0.00259588658613 0.00126485521686 0.13 20 -52.140377955 +0.00259588658613 0.00142252931349 0.13 20 -52.16482961 +0.00259588658613 0.00159985871961 0.13 20 -52.1923675494 +0.00259588658613 0.00179929362329 0.13 20 -52.2233866556 +0.00259588658613 0.00202358964773 0.13 20 -52.2583337406 +0.00259588658613 0.00227584592607 0.13 20 -52.297714743 +0.00259588658613 0.0025595479227 0.13 20 -52.342103015 +0.00259588658613 0.00287861559235 0.13 20 -52.392148891 +0.00259588658613 0.00323745754282 0.13 20 -52.4485907613 +0.00259588658613 0.00364103194931 0.13 20 -52.5122679273 +0.00259588658613 0.00409491506238 0.13 20 -52.5841355669 +0.00259588658613 0.00460537825582 0.13 20 -52.6652822146 +0.00259588658613 0.00517947467923 0.13 20 -52.7569502471 +0.00259588658613 0.00582513671247 0.13 20 -52.8605599792 +0.00259588658613 0.0065512855686 0.13 20 -52.977738113 +0.00259588658613 0.00736795455966 0.13 20 -53.1103514613 +0.00259588658613 0.00828642772855 0.13 20 -53.2605470882 +0.00259588658613 0.00931939576234 0.13 20 -53.430800295 +0.00259588658613 0.0104811313415 0.13 20 -53.6239722394 +0.00259588658613 0.0117876863479 0.13 20 -53.8433794399 +0.00259588658613 0.0132571136559 0.13 20 -54.0928780122 +0.00259588658613 0.0149097165718 0.13 20 -54.3769662499 +0.00259588658613 0.0167683293681 0.13 20 -54.7009101591 +0.00259588658613 0.0188586327877 0.13 20 -55.0708978481 +0.00259588658613 0.0212095088792 0.13 20 -55.4942303677 +0.00259588658613 0.0238534400643 0.13 20 -55.9795588174 +0.00259588658613 0.0268269579528 0.13 20 -56.5371804652 +0.00259588658613 0.0301711481053 0.13 20 -57.1794105164 +0.00259588658613 0.033932217719 0.13 20 -57.9210513404 +0.00259588658613 0.0381621340795 0.13 20 -58.7799879025 +0.00259588658613 0.0429193426013 0.13 20 -59.7779474767 +0.00259588658613 0.0482695743768 0.13 20 -60.9414743514 +0.00259588658613 0.0542867543932 0.13 20 -62.3031874316 +0.00259588658613 0.0610540229659 0.13 20 -63.9034121908 +0.00259588658613 0.0686648845004 0.13 20 -65.7923108664 +0.00259588658613 0.0772244994584 0.13 20 -68.0326798029 +0.00259588658613 0.0868511373751 0.13 20 -70.7036457437 +0.00259588658613 0.0976778110089 0.13 20 -73.90558148 +0.00259588658613 0.109854114199 0.13 20 -77.7666872583 +0.00259588658613 0.123548288826 0.13 20 -82.4518653857 +0.00259588658613 0.138949549437 0.13 20 -88.174778885 +0.00259588658613 0.156270697655 0.13 20 -95.2143740192 +0.00259588658613 0.175751062485 0.13 20 -103.937731229 +0.00259588658613 0.19765980717 0.13 20 -114.83200711 +0.00259588658613 0.222299648253 0.13 20 -128.549645619 +0.00259588658613 0.250011038262 0.13 20 -145.973337905 +0.00259588658613 0.281176869797 0.13 20 -168.311090318 +0.00259588658613 0.316227766017 0.13 20 -197.238587981 +0.00297487956027 0.001 0.13 20 -52.100004519 +0.00297487956027 0.00112465782212 0.13 20 -52.119369736 +0.00297487956027 0.00126485521686 0.13 20 -52.14117294 +0.00297487956027 0.00142252931349 0.13 20 -52.1657244096 +0.00297487956027 0.00159985871961 0.13 20 -52.1933747959 +0.00297487956027 0.00179929362329 0.13 20 -52.2245206061 +0.00297487956027 0.00202358964773 0.13 20 -52.2596104936 +0.00297487956027 0.00227584592607 0.13 20 -52.2991524846 +0.00297487956027 0.0025595479227 0.13 20 -52.3437223009 +0.00297487956027 0.00287861559235 0.13 20 -52.3939729691 +0.00297487956027 0.00323745754282 0.13 20 -52.4506459424 +0.00297487956027 0.00364103194931 0.13 20 -52.5145840107 +0.00297487956027 0.00409491506238 0.13 20 -52.5867463318 +0.00297487956027 0.00460537825582 0.13 20 -52.668225987 +0.00297487956027 0.00517947467923 0.13 20 -52.7602705574 +0.00297487956027 0.00582513671247 0.13 20 -52.8643063265 +0.00297487956027 0.0065512855686 0.13 20 -52.9819668554 +0.00297487956027 0.00736795455966 0.13 20 -53.1151268579 +0.00297487956027 0.00828642772855 0.13 20 -53.2659425226 +0.00297487956027 0.00931939576234 0.13 20 -53.4368997165 +0.00297487956027 0.0104811313415 0.13 20 -53.6308718686 +0.00297487956027 0.0117876863479 0.13 20 -53.8511897958 +0.00297487956027 0.0132571136559 0.13 20 -54.1017263304 +0.00297487956027 0.0149097165718 0.13 20 -54.3869993832 +0.00297487956027 0.0167683293681 0.13 20 -54.7122980711 +0.00297487956027 0.0188586327877 0.13 20 -55.0838378433 +0.00297487956027 0.0212095088792 0.13 20 -55.5089522393 +0.00297487956027 0.0238534400643 0.13 20 -55.9963311437 +0.00297487956027 0.0268269579528 0.13 20 -56.5563183547 +0.00297487956027 0.0301711481053 0.13 20 -57.2012851839 +0.00297487956027 0.033932217719 0.13 20 -57.946102017 +0.00297487956027 0.0381621340795 0.13 20 -58.8087367303 +0.00297487956027 0.0429193426013 0.13 20 -59.8110182463 +0.00297487956027 0.0482695743768 0.13 20 -60.9796162133 +0.00297487956027 0.0542867543932 0.13 20 -62.3473050824 +0.00297487956027 0.0610540229659 0.13 20 -63.9546045405 +0.00297487956027 0.0686648845004 0.13 20 -65.8519208791 +0.00297487956027 0.0772244994584 0.13 20 -68.1023591564 +0.00297487956027 0.0868511373751 0.13 20 -70.7854392654 +0.00297487956027 0.0976778110089 0.13 20 -74.002038163 +0.00297487956027 0.109854114199 0.13 20 -77.8810072586 +0.00297487956027 0.123548288826 0.13 20 -82.5880961113 +0.00297487956027 0.138949549437 0.13 20 -88.3380786367 +0.00297487956027 0.156270697655 0.13 20 -95.4113694732 +0.00297487956027 0.175751062485 0.13 20 -104.177006701 +0.00297487956027 0.19765980717 0.13 20 -115.124781231 +0.00297487956027 0.222299648253 0.13 20 -128.910718554 +0.00297487956027 0.250011038262 0.13 20 -146.422436323 +0.00297487956027 0.281176869797 0.13 20 -168.87481035 +0.00297487956027 0.316227766017 0.13 20 -197.953262692 +0.0034092045644 0.001 0.13 20 -52.1005166074 +0.0034092045644 0.00112465782212 0.13 20 -52.1199460245 +0.0034092045644 0.00126485521686 0.13 20 -52.1418215284 +0.0034092045644 0.00142252931349 0.13 20 -52.1664544331 +0.0034092045644 0.00159985871961 0.13 20 -52.1941965608 +0.0034092045644 0.00179929362329 0.13 20 -52.225445745 +0.0034092045644 0.00202358964773 0.13 20 -52.2606521413 +0.0034092045644 0.00227584592607 0.13 20 -52.3003254793 +0.0034092045644 0.0025595479227 0.13 20 -52.3450434145 +0.0034092045644 0.00287861559235 0.13 20 -52.3954611705 +0.0034092045644 0.00323745754282 0.13 20 -52.4523226998 +0.0034092045644 0.00364103194931 0.13 20 -52.5164736396 +0.0034092045644 0.00409491506238 0.13 20 -52.5888763953 +0.0034092045644 0.00460537825582 0.13 20 -52.6706277597 +0.0034092045644 0.00517947467923 0.13 20 -52.7629795617 +0.0034092045644 0.00582513671247 0.13 20 -52.8673629567 +0.0034092045644 0.0065512855686 0.13 20 -52.9854171055 +0.0034092045644 0.00736795455966 0.13 20 -53.1190231726 +0.0034092045644 0.00828642772855 0.13 20 -53.2703447968 +0.0034092045644 0.00931939576234 0.13 20 -53.4418764736 +0.0034092045644 0.0104811313415 0.13 20 -53.6365016551 +0.0034092045644 0.0117876863479 0.13 20 -53.8575628385 +0.0034092045644 0.0132571136559 0.13 20 -54.1089465156 +0.0034092045644 0.0149097165718 0.13 20 -54.39518663 +0.0034092045644 0.0167683293681 0.13 20 -54.7215911923 +0.0034092045644 0.0188586327877 0.13 20 -55.0943980113 +0.0034092045644 0.0212095088792 0.13 20 -55.5209672048 +0.0034092045644 0.0238534400643 0.13 20 -56.0100204013 +0.0034092045644 0.0268269579528 0.13 20 -56.5719394988 +0.0034092045644 0.0301711481053 0.13 20 -57.2191417756 +0.0034092045644 0.033932217719 0.13 20 -57.9665533738 +0.0034092045644 0.0381621340795 0.13 20 -58.832210182 +0.0034092045644 0.0429193426013 0.13 20 -59.838024566 +0.0034092045644 0.0482695743768 0.13 20 -61.0107691634 +0.0034092045644 0.0542867543932 0.13 20 -62.3833463244 +0.0034092045644 0.0610540229659 0.13 20 -63.9964355746 +0.0034092045644 0.0686648845004 0.13 20 -65.9006442595 +0.0034092045644 0.0772244994584 0.13 20 -68.1593320138 +0.0034092045644 0.0868511373751 0.13 20 -70.8523432726 +0.0034092045644 0.0976778110089 0.13 20 -74.0809716134 +0.0034092045644 0.109854114199 0.13 20 -77.9746070942 +0.0034092045644 0.123548288826 0.13 20 -82.6997008261 +0.0034092045644 0.138949549437 0.13 20 -88.4719474266 +0.0034092045644 0.156270697655 0.13 20 -95.5729794996 +0.0034092045644 0.175751062485 0.13 20 -104.37345997 +0.0034092045644 0.19765980717 0.13 20 -115.36536717 +0.0034092045644 0.222299648253 0.13 20 -129.207700954 +0.0034092045644 0.250011038262 0.13 20 -146.792169292 +0.0034092045644 0.281176869797 0.13 20 -169.339347264 +0.0034092045644 0.316227766017 0.13 20 -198.542723941 +0.00390693993705 0.001 0.13 20 -52.1009614596 +0.00390693993705 0.00112465782212 0.13 20 -52.1204466447 +0.00390693993705 0.00126485521686 0.13 20 -52.1423849517 +0.00390693993705 0.00142252931349 0.13 20 -52.1670885938 +0.00390693993705 0.00159985871961 0.13 20 -52.1949104104 +0.00390693993705 0.00179929362329 0.13 20 -52.2262493862 +0.00390693993705 0.00202358964773 0.13 20 -52.2615569812 +0.00390693993705 0.00227584592607 0.13 20 -52.3013444041 +0.00390693993705 0.0025595479227 0.13 20 -52.346190989 +0.00390693993705 0.00287861559235 0.13 20 -52.3967538665 +0.00390693993705 0.00323745754282 0.13 20 -52.4537791587 +0.00390693993705 0.00364103194931 0.13 20 -52.5181149738 +0.00390693993705 0.00409491506238 0.13 20 -52.5907265361 +0.00390693993705 0.00460537825582 0.13 20 -52.6727138584 +0.00390693993705 0.00517947467923 0.13 20 -52.7653324559 +0.00390693993705 0.00582513671247 0.13 20 -52.8700177106 +0.00390693993705 0.0065512855686 0.13 20 -52.9884136408 +0.00390693993705 0.00736795455966 0.13 20 -53.1224070063 +0.00390693993705 0.00828642772855 0.13 20 -53.2741679074 +0.00390693993705 0.00931939576234 0.13 20 -53.4461983223 +0.00390693993705 0.0104811313415 0.13 20 -53.641390394 +0.00390693993705 0.0117876863479 0.13 20 -53.8630967468 +0.00390693993705 0.0132571136559 0.13 20 -54.1152157145 +0.00390693993705 0.0149097165718 0.13 20 -54.4022951394 +0.00390693993705 0.0167683293681 0.13 20 -54.7296594105 +0.00390693993705 0.0188586327877 0.13 20 -55.1035657186 +0.00390693993705 0.0212095088792 0.13 20 -55.5313972219 +0.00390693993705 0.0238534400643 0.13 20 -56.0219030687 +0.00390693993705 0.0268269579528 0.13 20 -56.5854981912 +0.00390693993705 0.0301711481053 0.13 20 -57.2346397296 +0.00390693993705 0.033932217719 0.13 20 -57.9843021904 +0.00390693993705 0.0381621340795 0.13 20 -58.8525804752 +0.00390693993705 0.0429193426013 0.13 20 -59.8614593811 +0.00390693993705 0.0482695743768 0.13 20 -61.0378009859 +0.00390693993705 0.0542867543932 0.13 20 -62.4146187736 +0.00390693993705 0.0610540229659 0.13 20 -64.0327312463 +0.00390693993705 0.0686648845004 0.13 20 -65.9429206853 +0.00390693993705 0.0772244994584 0.13 20 -68.2087684061 +0.00390693993705 0.0868511373751 0.13 20 -70.9104016897 +0.00390693993705 0.0976778110089 0.13 20 -74.1494775354 +0.00390693993705 0.109854114199 0.13 20 -78.0558563105 +0.00390693993705 0.123548288826 0.13 20 -82.7966022564 +0.00390693993705 0.138949549437 0.13 20 -88.5882154132 +0.00390693993705 0.156270697655 0.13 20 -95.7133948277 +0.00390693993705 0.175751062485 0.13 20 -104.544227342 +0.00390693993705 0.19765980717 0.13 20 -115.574609658 +0.00390693993705 0.222299648253 0.13 20 -129.466151747 +0.00390693993705 0.250011038262 0.13 20 -147.11415251 +0.00390693993705 0.281176869797 0.13 20 -169.744191332 +0.00390693993705 0.316227766017 0.13 20 -199.056839547 +0.00447734343405 0.001 0.13 20 -52.1013653708 +0.00447734343405 0.00112465782212 0.13 20 -52.120901186 +0.00447734343405 0.00126485521686 0.13 20 -52.1428965087 +0.00447734343405 0.00142252931349 0.13 20 -52.167664368 +0.00447734343405 0.00159985871961 0.13 20 -52.1955585257 +0.00447734343405 0.00179929362329 0.13 20 -52.2269790111 +0.00447734343405 0.00202358964773 0.13 20 -52.2623784672 +0.00447734343405 0.00227584592607 0.13 20 -52.3022694437 +0.00447734343405 0.0025595479227 0.13 20 -52.3472327968 +0.00447734343405 0.00287861559235 0.13 20 -52.3979273862 +0.00447734343405 0.00323745754282 0.13 20 -52.4551013001 +0.00447734343405 0.00364103194931 0.13 20 -52.519604886 +0.00447734343405 0.00409491506238 0.13 20 -52.5924059221 +0.00447734343405 0.00460537825582 0.13 20 -52.6746073381 +0.00447734343405 0.00517947467923 0.13 20 -52.767467987 +0.00447734343405 0.00582513671247 0.13 20 -52.8724270774 +0.00447734343405 0.0065512855686 0.13 20 -52.9911330238 +0.00447734343405 0.00736795455966 0.13 20 -53.1254776486 +0.00447734343405 0.00828642772855 0.13 20 -53.2776368964 +0.00447734343405 0.00931939576234 0.13 20 -53.450119511 +0.00447734343405 0.0104811313415 0.13 20 -53.6458254909 +0.00447734343405 0.0117876863479 0.13 20 -53.868116611 +0.00447734343405 0.0132571136559 0.13 20 -54.1209019009 +0.00447734343405 0.0149097165718 0.13 20 -54.4087417525 +0.00447734343405 0.0167683293681 0.13 20 -54.7369753378 +0.00447734343405 0.0188586327877 0.13 20 -55.1118773366 +0.00447734343405 0.0212095088792 0.13 20 -55.5408516908 +0.00447734343405 0.0238534400643 0.13 20 -56.0326723664 +0.00447734343405 0.0268269579528 0.13 20 -56.59778408 +0.00447734343405 0.0301711481053 0.13 20 -57.2486799067 +0.00447734343405 0.033932217719 0.13 20 -58.0003779482 +0.00447734343405 0.0381621340795 0.13 20 -58.8710262991 +0.00447734343405 0.0429193426013 0.13 20 -59.8826750481 +0.00447734343405 0.0482695743768 0.13 20 -61.0622669091 +0.00447734343405 0.0542867543932 0.13 20 -62.4429155855 +0.00447734343405 0.0610540229659 0.13 20 -64.0655649492 +0.00447734343405 0.0686648845004 0.13 20 -65.9811551607 +0.00447734343405 0.0772244994584 0.13 20 -68.2534677093 +0.00447734343405 0.0868511373751 0.13 20 -70.9628854427 +0.00447734343405 0.0976778110089 0.13 20 -74.2113939667 +0.00447734343405 0.109854114199 0.13 20 -78.1292792404 +0.00447734343405 0.123548288826 0.13 20 -82.8841608108 +0.00447734343405 0.138949549437 0.13 20 -88.6932688391 +0.00447734343405 0.156270697655 0.13 20 -95.8402700097 +0.00447734343405 0.175751062485 0.13 20 -104.698544379 +0.00447734343405 0.19765980717 0.13 20 -115.76373257 +0.00447734343405 0.222299648253 0.13 20 -129.699819506 +0.00447734343405 0.250011038262 0.13 20 -147.405374372 +0.00447734343405 0.281176869797 0.13 20 -170.110537826 +0.00447734343405 0.316227766017 0.13 20 -199.522341473 +0.00513102442049 0.001 0.13 20 -52.1017401911 +0.00513102442049 0.00112465782212 0.13 20 -52.121322983 +0.00513102442049 0.00126485521686 0.13 20 -52.1433712054 +0.00513102442049 0.00142252931349 0.13 20 -52.1681986435 +0.00513102442049 0.00159985871961 0.13 20 -52.1961599145 +0.00513102442049 0.00179929362329 0.13 20 -52.2276560154 +0.00513102442049 0.00202358964773 0.13 20 -52.2631406853 +0.00513102442049 0.00227584592607 0.13 20 -52.3031277164 +0.00513102442049 0.0025595479227 0.13 20 -52.3481993743 +0.00513102442049 0.00287861559235 0.13 20 -52.3990161195 +0.00513102442049 0.00323745754282 0.13 20 -52.4563278608 +0.00513102442049 0.00364103194931 0.13 20 -52.5209870179 +0.00513102442049 0.00409491506238 0.13 20 -52.5939637313 +0.00513102442049 0.00460537825582 0.13 20 -52.6763636288 +0.00513102442049 0.00517947467923 0.13 20 -52.7694486489 +0.00513102442049 0.00582513671247 0.13 20 -52.8746615365 +0.00513102442049 0.0065512855686 0.13 20 -52.9936547671 +0.00513102442049 0.00736795455966 0.13 20 -53.1283248375 +0.00513102442049 0.00828642772855 0.13 20 -53.2808530858 +0.00513102442049 0.00931939576234 0.13 20 -53.4537544964 +0.00513102442049 0.0104811313415 0.13 20 -53.64993631 +0.00513102442049 0.0117876863479 0.13 20 -53.8727687327 +0.00513102442049 0.0132571136559 0.13 20 -54.126170644 +0.00513102442049 0.0149097165718 0.13 20 -54.4147139858 +0.00513102442049 0.0167683293681 0.13 20 -54.7437515284 +0.00513102442049 0.0188586327877 0.13 20 -55.1195740292 +0.00513102442049 0.0212095088792 0.13 20 -55.5496045266 +0.00513102442049 0.0238534400643 0.13 20 -56.0426397773 +0.00513102442049 0.0268269579528 0.13 20 -56.6091518374 +0.00513102442049 0.0301711481053 0.13 20 -57.2616667524 +0.00513102442049 0.033932217719 0.13 20 -58.0152426082 +0.00513102442049 0.0381621340795 0.13 20 -58.8880762726 +0.00513102442049 0.0429193426013 0.13 20 -59.9022776893 +0.00513102442049 0.0482695743768 0.13 20 -61.0848634858 +0.00513102442049 0.0542867543932 0.13 20 -62.4690392302 +0.00513102442049 0.0610540229659 0.13 20 -64.0958637261 +0.00513102442049 0.0686648845004 0.13 20 -66.0164219008 +0.00513102442049 0.0772244994584 0.13 20 -68.2946788552 +0.00513102442049 0.0868511373751 0.13 20 -71.011251964 +0.00513102442049 0.0976778110089 0.13 20 -74.2684285563 +0.00513102442049 0.109854114199 0.13 20 -78.1968856215 +0.00513102442049 0.123548288826 0.13 20 -82.9647532993 +0.00513102442049 0.138949549437 0.13 20 -88.7899336363 +0.00513102442049 0.156270697655 0.13 20 -95.9569845686 +0.00513102442049 0.175751062485 0.13 20 -104.840478406 +0.00513102442049 0.19765980717 0.13 20 -115.937665145 +0.00513102442049 0.222299648253 0.13 20 -129.914723687 +0.00513102442049 0.250011038262 0.13 20 -147.673247563 +0.00513102442049 0.281176869797 0.13 20 -170.447600434 +0.00513102442049 0.316227766017 0.13 20 -199.950802258 +0.00588014120237 0.001 0.13 20 -52.1020901808 +0.00588014120237 0.00112465782212 0.13 20 -52.1217168295 +0.00588014120237 0.00126485521686 0.13 20 -52.1438144363 +0.00588014120237 0.00142252931349 0.13 20 -52.1686974916 +0.00588014120237 0.00159985871961 0.13 20 -52.1967214098 +0.00588014120237 0.00179929362329 0.13 20 -52.2282880902 +0.00588014120237 0.00202358964773 0.13 20 -52.2638522934 +0.00588014120237 0.00227584592607 0.13 20 -52.3039289693 +0.00588014120237 0.0025595479227 0.13 20 -52.3491016964 +0.00588014120237 0.00287861559235 0.13 20 -52.4000324263 +0.00588014120237 0.00323745754282 0.13 20 -52.457472762 +0.00588014120237 0.00364103194931 0.13 20 -52.5222770518 +0.00588014120237 0.00409491506238 0.13 20 -52.5954176342 +0.00588014120237 0.00460537825582 0.13 20 -52.6780026454 +0.00588014120237 0.00517947467923 0.13 20 -52.771296892 +0.00588014120237 0.00582513671247 0.13 20 -52.8767464041 +0.00588014120237 0.0065512855686 0.13 20 -52.9960074278 +0.00588014120237 0.00736795455966 0.13 20 -53.1309807973 +0.00588014120237 0.00828642772855 0.13 20 -53.283852853 +0.00588014120237 0.00931939576234 0.13 20 -53.4571443632 +0.00588014120237 0.0104811313415 0.13 20 -53.653769276 +0.00588014120237 0.0117876863479 0.13 20 -53.877105601 +0.00588014120237 0.0132571136559 0.13 20 -54.1310813272 +0.00588014120237 0.0149097165718 0.13 20 -54.420279071 +0.00588014120237 0.0167683293681 0.13 20 -54.7500641597 +0.00588014120237 0.0188586327877 0.13 20 -55.1267421867 +0.00588014120237 0.0212095088792 0.13 20 -55.5577537988 +0.00588014120237 0.0238534400643 0.13 20 -56.0519167524 +0.00588014120237 0.0268269579528 0.13 20 -56.6197282765 +0.00588014120237 0.0301711481053 0.13 20 -57.2737447556 +0.00588014120237 0.033932217719 0.13 20 -58.0290610473 +0.00588014120237 0.0381621340795 0.13 20 -58.9039188519 +0.00588014120237 0.0429193426013 0.13 20 -59.9204831091 +0.00588014120237 0.0482695743768 0.13 20 -61.1058383406 +0.00588014120237 0.0542867543932 0.13 20 -62.4932744815 +0.00588014120237 0.0610540229659 0.13 20 -64.12395588 +0.00588014120237 0.0686648845004 0.13 20 -66.0491004147 +0.00588014120237 0.0772244994584 0.13 20 -68.3328418439 +0.00588014120237 0.0868511373751 0.13 20 -71.0560130371 +0.00588014120237 0.0976778110089 0.13 20 -74.3211786813 +0.00588014120237 0.109854114199 0.13 20 -78.2593754179 +0.00588014120237 0.123548288826 0.13 20 -83.0392033142 +0.00588014120237 0.138949549437 0.13 20 -88.8791832536 +0.00588014120237 0.156270697655 0.13 20 -96.0646947365 +0.00588014120237 0.175751062485 0.13 20 -104.971410093 +0.00588014120237 0.19765980717 0.13 20 -116.098065621 +0.00588014120237 0.222299648253 0.13 20 -130.112868502 +0.00588014120237 0.250011038262 0.13 20 -147.920211241 +0.00588014120237 0.281176869797 0.13 20 -170.758370371 +0.00588014120237 0.316227766017 0.13 20 -200.345921519 +0.00673862716803 0.001 0.13 20 -52.1024166719 +0.00673862716803 0.00112465782212 0.13 20 -52.1220842244 +0.00673862716803 0.00126485521686 0.13 20 -52.1442278882 +0.00673862716803 0.00142252931349 0.13 20 -52.1691628105 +0.00673862716803 0.00159985871961 0.13 20 -52.1972451483 +0.00673862716803 0.00179929362329 0.13 20 -52.2288776408 +0.00673862716803 0.00202358964773 0.13 20 -52.2645159995 +0.00673862716803 0.00227584592607 0.13 20 -52.3046762515 +0.00673862716803 0.0025595479227 0.13 20 -52.3499431969 +0.00673862716803 0.00287861559235 0.13 20 -52.4009801735 +0.00673862716803 0.00323745754282 0.13 20 -52.4585403598 +0.00673862716803 0.00364103194931 0.13 20 -52.5234798961 +0.00673862716803 0.00409491506238 0.13 20 -52.5967731621 +0.00673862716803 0.00460537825582 0.13 20 -52.6795306231 +0.00673862716803 0.00517947467923 0.13 20 -52.7730197468 +0.00673862716803 0.00582513671247 0.13 20 -52.8786896097 +0.00673862716803 0.0065512855686 0.13 20 -52.9981999524 +0.00673862716803 0.00736795455966 0.13 20 -53.1334556262 +0.00673862716803 0.00828642772855 0.13 20 -53.2866476009 +0.00673862716803 0.00931939576234 0.13 20 -53.4603019934 +0.00673862716803 0.0104811313415 0.13 20 -53.6573389498 +0.00673862716803 0.0117876863479 0.13 20 -53.8811436838 +0.00673862716803 0.0132571136559 0.13 20 -54.1356525876 +0.00673862716803 0.0149097165718 0.13 20 -54.4254581144 +0.00673862716803 0.0167683293681 0.13 20 -54.7559371537 +0.00673862716803 0.0188586327877 0.13 20 -55.1334089459 +0.00673862716803 0.0212095088792 0.13 20 -55.5653303197 +0.00673862716803 0.0238534400643 0.13 20 -56.0605383129 +0.00673862716803 0.0268269579528 0.13 20 -56.6295532476 +0.00673862716803 0.0301711481053 0.13 20 -57.2849593162 +0.00673862716803 0.033932217719 0.13 20 -58.0418850554 +0.00673862716803 0.0381621340795 0.13 20 -58.918613199 +0.00673862716803 0.0429193426013 0.13 20 -59.9373589926 +0.00673862716803 0.0482695743768 0.13 20 -61.1252690321 +0.00673862716803 0.0542867543932 0.13 20 -62.5157103597 +0.00673862716803 0.0610540229659 0.13 20 -64.1499437643 +0.00673862716803 0.0686648845004 0.13 20 -66.0793085968 +0.00673862716803 0.0772244994584 0.13 20 -68.3680927189 +0.00673862716803 0.0868511373751 0.13 20 -71.0973259352 +0.00673862716803 0.0976778110089 0.13 20 -74.3698264859 +0.00673862716803 0.109854114199 0.13 20 -78.3169599425 +0.00673862716803 0.123548288826 0.13 20 -83.1077563998 +0.00673862716803 0.138949549437 0.13 20 -88.9613034102 +0.00673862716803 0.156270697655 0.13 20 -96.1637333458 +0.00673862716803 0.175751062485 0.13 20 -105.091727418 +0.00673862716803 0.19765980717 0.13 20 -116.245386298 +0.00673862716803 0.222299648253 0.13 20 -130.294780839 +0.00673862716803 0.250011038262 0.13 20 -148.146877978 +0.00673862716803 0.281176869797 0.13 20 -171.043557151 +0.00673862716803 0.316227766017 0.13 20 -200.708515643 +0.00772244994584 0.001 0.13 20 -52.1027204848 +0.00772244994584 0.00112465782212 0.13 20 -52.1224260912 +0.00772244994584 0.00126485521686 0.13 20 -52.1446126008 +0.00772244994584 0.00142252931349 0.13 20 -52.169595771 +0.00772244994584 0.00159985871961 0.13 20 -52.1977324482 +0.00772244994584 0.00179929362329 0.13 20 -52.2294261518 +0.00772244994584 0.00202358964773 0.13 20 -52.2651334758 +0.00772244994584 0.00227584592607 0.13 20 -52.305371447 +0.00772244994584 0.0025595479227 0.13 20 -52.3507259986 +0.00772244994584 0.00287861559235 0.13 20 -52.4018617541 +0.00772244994584 0.00323745754282 0.13 20 -52.4595333521 +0.00772244994584 0.00364103194931 0.13 20 -52.5245985933 +0.00772244994584 0.00409491506238 0.13 20 -52.5980337477 +0.00772244994584 0.00460537825582 0.13 20 -52.6809514359 +0.00772244994584 0.00517947467923 0.13 20 -52.7746215871 +0.00772244994584 0.00582513671247 0.13 20 -52.8804960938 +0.00772244994584 0.0065512855686 0.13 20 -53.0002379244 +0.00772244994584 0.00736795455966 0.13 20 -53.135755638 +0.00772244994584 0.00828642772855 0.13 20 -53.2892444734 +0.00772244994584 0.00931939576234 0.13 20 -53.4632354758 +0.00772244994584 0.0104811313415 0.13 20 -53.6606544968 +0.00772244994584 0.0117876863479 0.13 20 -53.8848933755 +0.00772244994584 0.0132571136559 0.13 20 -54.1398962239 +0.00772244994584 0.0149097165718 0.13 20 -54.4302645226 +0.00772244994584 0.0167683293681 0.13 20 -54.7613857601 +0.00772244994584 0.0188586327877 0.13 20 -55.1395916734 +0.00772244994584 0.0212095088792 0.13 20 -55.5723538923 +0.00772244994584 0.0238534400643 0.13 20 -56.0685270711 +0.00772244994584 0.0268269579528 0.13 20 -56.6386526078 +0.00772244994584 0.0301711481053 0.13 20 -57.2953400484 +0.00772244994584 0.033932217719 0.13 20 -58.0537486053 +0.00772244994584 0.0381621340795 0.13 20 -58.9321983532 +0.00772244994584 0.0429193426013 0.13 20 -59.9529502809 +0.00772244994584 0.0482695743768 0.13 20 -61.1432073888 +0.00772244994584 0.0542867543932 0.13 20 -62.5364067458 +0.00772244994584 0.0610540229659 0.13 20 -64.1738966892 +0.00772244994584 0.0686648845004 0.13 20 -66.1071268124 +0.00772244994584 0.0772244994584 0.13 20 -68.4005248181 +0.00772244994584 0.0868511373751 0.13 20 -71.1352992262 +0.00772244994584 0.0976778110089 0.13 20 -74.4144984126 +0.00772244994584 0.109854114199 0.13 20 -78.3697865954 +0.00772244994584 0.123548288826 0.13 20 -83.1705844763 +0.00772244994584 0.138949549437 0.13 20 -89.0364946139 +0.00772244994584 0.156270697655 0.13 20 -96.2543340533 +0.00772244994584 0.175751062485 0.13 20 -105.20170216 +0.00772244994584 0.19765980717 0.13 20 -116.379942268 +0.00772244994584 0.222299648253 0.13 20 -130.460824081 +0.00772244994584 0.250011038262 0.13 20 -148.353663417 +0.00772244994584 0.281176869797 0.13 20 -171.303630136 +0.00772244994584 0.316227766017 0.13 20 -201.039103912 +0.00884990839809 0.001 0.13 20 -52.1030027987 +0.00884990839809 0.00112465782212 0.13 20 -52.1227437574 +0.00884990839809 0.00126485521686 0.13 20 -52.1449700687 +0.00884990839809 0.00142252931349 0.13 20 -52.1699980558 +0.00884990839809 0.00159985871961 0.13 20 -52.1981852049 +0.00884990839809 0.00179929362329 0.13 20 -52.229935758 +0.00884990839809 0.00202358964773 0.13 20 -52.2657071275 +0.00884990839809 0.00227584592607 0.13 20 -52.3060172661 +0.00884990839809 0.0025595479227 0.13 20 -52.3514531566 +0.00884990839809 0.00287861559235 0.13 20 -52.4026806124 +0.00884990839809 0.00323745754282 0.13 20 -52.4604556233 +0.00884990839809 0.00364103194931 0.13 20 -52.5256375254 +0.00884990839809 0.00409491506238 0.13 20 -52.5992043362 +0.00884990839809 0.00460537825582 0.13 20 -52.6822706672 +0.00884990839809 0.00517947467923 0.13 20 -52.7761087198 +0.00884990839809 0.00582513671247 0.13 20 -52.8821729842 +0.00884990839809 0.0065512855686 0.13 20 -53.0021294037 +0.00884990839809 0.00736795455966 0.13 20 -53.1378899523 +0.00884990839809 0.00828642772855 0.13 20 -53.2916537966 +0.00884990839809 0.00931939576234 0.13 20 -53.4659565121 +0.00884990839809 0.0104811313415 0.13 20 -53.6637291889 +0.00884990839809 0.0117876863479 0.13 20 -53.888369743 +0.00884990839809 0.0132571136559 0.13 20 -54.1438293585 +0.00884990839809 0.0149097165718 0.13 20 -54.4347177766 +0.00884990839809 0.0167683293681 0.13 20 -54.7664321714 +0.00884990839809 0.0188586327877 0.13 20 -55.1453156851 +0.00884990839809 0.0212095088792 0.13 20 -55.5788534387 +0.00884990839809 0.0238534400643 0.13 20 -56.0759161225 +0.00884990839809 0.0268269579528 0.13 20 -56.6470642946 +0.00884990839809 0.0301711481053 0.13 20 -57.3049305212 +0.00884990839809 0.033932217719 0.13 20 -58.0647018338 +0.00884990839809 0.0381621340795 0.13 20 -58.9447321325 +0.00884990839809 0.0429193426013 0.13 20 -59.9673237996 +0.00884990839809 0.0482695743768 0.13 20 -61.1597308306 +0.00884990839809 0.0542867543932 0.13 20 -62.5554535552 +0.00884990839809 0.0610540229659 0.13 20 -64.1959193493 +0.00884990839809 0.0686648845004 0.13 20 -66.1326772853 +0.00884990839809 0.0772244994584 0.13 20 -68.4302812119 +0.00884990839809 0.0868511373751 0.13 20 -71.1701008353 +0.00884990839809 0.0976778110089 0.13 20 -74.455392092 +0.00884990839809 0.109854114199 0.13 20 -78.4180885864 +0.00884990839809 0.123548288826 0.13 20 -83.2279634511 +0.00884990839809 0.138949549437 0.13 20 -89.1050840948 +0.00884990839809 0.156270697655 0.13 20 -96.3368858565 +0.00884990839809 0.175751062485 0.13 20 -105.301797714 +0.00884990839809 0.19765980717 0.13 20 -116.502286542 +0.00884990839809 0.222299648253 0.13 20 -130.611659122 +0.00884990839809 0.250011038262 0.13 20 -148.541358069 +0.00884990839809 0.281176869797 0.13 20 -171.539534974 +0.00884990839809 0.316227766017 0.13 20 -201.338816362 +0.0101419729754 0.001 0.13 20 -52.1032652568 +0.0101419729754 0.00112465782212 0.13 20 -52.1230390728 +0.0101419729754 0.00126485521686 0.13 20 -52.1453023745 +0.0101419729754 0.00142252931349 0.13 20 -52.1703720102 +0.0101419729754 0.00159985871961 0.13 20 -52.1986060592 +0.0101419729754 0.00179929362329 0.13 20 -52.2304094343 +0.0101419729754 0.00202358964773 0.13 20 -52.266240306 +0.0101419729754 0.00227584592607 0.13 20 -52.3066174853 +0.0101419729754 0.0025595479227 0.13 20 -52.3521289271 +0.0101419729754 0.00287861559235 0.13 20 -52.4034415469 +0.0101419729754 0.00323745754282 0.13 20 -52.4613125847 +0.0101419729754 0.00364103194931 0.13 20 -52.5266027971 +0.0101419729754 0.00409491506238 0.13 20 -52.6002918168 +0.0101419729754 0.00460537825582 0.13 20 -52.6834960945 +0.0101419729754 0.00517947467923 0.13 20 -52.7774899295 +0.0101419729754 0.00582513671247 0.13 20 -52.8837302078 +0.0101419729754 0.0065512855686 0.13 20 -53.0038856151 +0.0101419729754 0.00736795455966 0.13 20 -53.1398712691 +0.0101419729754 0.00828642772855 0.13 20 -53.29388995 +0.0101419729754 0.00931939576234 0.13 20 -53.4684813955 +0.0101419729754 0.0104811313415 0.13 20 -53.6665815041 +0.0101419729754 0.0117876863479 0.13 20 -53.8915937621 +0.0101419729754 0.0132571136559 0.13 20 -54.1474758282 +0.0101419729754 0.0149097165718 0.13 20 -54.4388449955 +0.0101419729754 0.0167683293681 0.13 20 -54.7711072805 +0.0101419729754 0.0188586327877 0.13 20 -55.1506162226 +0.0101419729754 0.0212095088792 0.13 20 -55.5848692225 +0.0101419729754 0.0238534400643 0.13 20 -56.0827515451 +0.0101419729754 0.0268269579528 0.13 20 -56.654841136 +0.0101419729754 0.0301711481053 0.13 20 -57.3137914205 +0.0101419729754 0.033932217719 0.13 20 -58.0748146008 +0.0101419729754 0.0381621340795 0.13 20 -58.9562951402 +0.0101419729754 0.0429193426013 0.13 20 -59.9805727737 +0.0101419729754 0.0482695743768 0.13 20 -61.1749474594 +0.0101419729754 0.0542867543932 0.13 20 -62.5729764833 +0.0101419729754 0.0610540229659 0.13 20 -64.2161583186 +0.0101419729754 0.0686648845004 0.13 20 -66.1561314529 +0.0101419729754 0.0772244994584 0.13 20 -68.4575630512 +0.0101419729754 0.0868511373751 0.13 20 -71.2019675492 +0.0101419729754 0.0976778110089 0.13 20 -74.4927872019 +0.0101419729754 0.109854114199 0.13 20 -78.4621974009 +0.0101419729754 0.123548288826 0.13 20 -83.2802876107 +0.0101419729754 0.138949549437 0.13 20 -89.1675425387 +0.0101419729754 0.156270697655 0.13 20 -96.4119527149 +0.0101419729754 0.175751062485 0.13 20 -105.392692321 +0.0101419729754 0.19765980717 0.13 20 -116.613237895 +0.0101419729754 0.222299648253 0.13 20 -130.748278173 +0.0101419729754 0.250011038262 0.13 20 -148.711168978 +0.0101419729754 0.281176869797 0.13 20 -171.752745783 +0.0101419729754 0.316227766017 0.13 20 -201.609460289 +0.0116226757619 0.001 0.13 20 -52.1035098349 +0.0116226757619 0.00112465782212 0.13 20 -52.1233142617 +0.0116226757619 0.00126485521686 0.13 20 -52.1456120223 +0.0116226757619 0.00142252931349 0.13 20 -52.1707204537 +0.0116226757619 0.00159985871961 0.13 20 -52.1989981866 +0.0116226757619 0.00179929362329 0.13 20 -52.230850757 +0.0116226757619 0.00202358964773 0.13 20 -52.2667370401 +0.0116226757619 0.00227584592607 0.13 20 -52.307176644 +0.0116226757619 0.0025595479227 0.13 20 -52.3527584263 +0.0116226757619 0.00287861559235 0.13 20 -52.4041503249 +0.0116226757619 0.00323745754282 0.13 20 -52.4621107399 +0.0116226757619 0.00364103194931 0.13 20 -52.5275017442 +0.0116226757619 0.00409491506238 0.13 20 -52.601304467 +0.0116226757619 0.00460537825582 0.13 20 -52.6846370621 +0.0116226757619 0.00517947467923 0.13 20 -52.7787757691 +0.0116226757619 0.00582513671247 0.13 20 -52.8851796888 +0.0116226757619 0.0065512855686 0.13 20 -53.0055200391 +0.0116226757619 0.00736795455966 0.13 20 -53.1417148385 +0.0116226757619 0.00828642772855 0.13 20 -53.2959701969 +0.0116226757619 0.00931939576234 0.13 20 -53.4708296838 +0.0116226757619 0.0104811313415 0.13 20 -53.6692336182 +0.0116226757619 0.0117876863479 0.13 20 -53.894590601 +0.0116226757619 0.0132571136559 0.13 20 -54.1508642269 +0.0116226757619 0.0149097165718 0.13 20 -54.4426787027 +0.0116226757619 0.0167683293681 0.13 20 -54.7754481275 +0.0116226757619 0.0188586327877 0.13 20 -55.1555355284 +0.0116226757619 0.0212095088792 0.13 20 -55.5904494934 +0.0116226757619 0.0238534400643 0.13 20 -56.0890885421 +0.0116226757619 0.0268269579528 0.13 20 -56.6620464058 +0.0116226757619 0.0301711481053 0.13 20 -57.321995414 +0.0116226757619 0.033932217719 0.13 20 -58.084170542 +0.0116226757619 0.0381621340795 0.13 20 -58.9669838584 +0.0116226757619 0.0429193426013 0.13 20 -59.9928087824 +0.0116226757619 0.0482695743768 0.13 20 -61.1889866576 +0.0116226757619 0.0542867543932 0.13 20 -62.589125984 +0.0116226757619 0.0610540229659 0.13 20 -64.2347890836 +0.0116226757619 0.0686648845004 0.13 20 -66.1776946543 +0.0116226757619 0.0772244994584 0.13 20 -68.4826114166 +0.0116226757619 0.0868511373751 0.13 20 -71.2311834138 +0.0116226757619 0.0976778110089 0.13 20 -74.5270196499 +0.0116226757619 0.109854114199 0.13 20 -78.5025118122 +0.0116226757619 0.123548288826 0.13 20 -83.3280322611 +0.0116226757619 0.138949549437 0.13 20 -89.2244388352 +0.0116226757619 0.156270697655 0.13 20 -96.4802184726 +0.0116226757619 0.175751062485 0.13 20 -105.4752117 +0.0116226757619 0.19765980717 0.13 20 -116.713798004 +0.0116226757619 0.222299648253 0.13 20 -130.871902281 +0.0116226757619 0.250011038262 0.13 20 -148.864592184 +0.0116226757619 0.281176869797 0.13 20 -171.945105362 +0.0116226757619 0.316227766017 0.13 20 -201.853318516 +0.0133195574662 0.001 0.13 20 -52.1037387144 +0.0133195574662 0.00112465782212 0.13 20 -52.1235717792 +0.0133195574662 0.00126485521686 0.13 20 -52.1459017763 +0.0133195574662 0.00142252931349 0.13 20 -52.1710464985 +0.0133195574662 0.00159985871961 0.13 20 -52.1993650916 +0.0133195574662 0.00179929362329 0.13 20 -52.2312636731 +0.0133195574662 0.00202358964773 0.13 20 -52.2672017758 +0.0133195574662 0.00227584592607 0.13 20 -52.3076997515 +0.0133195574662 0.0025595479227 0.13 20 -52.353347299 +0.0133195574662 0.00287861559235 0.13 20 -52.4048133094 +0.0133195574662 0.00323745754282 0.13 20 -52.4628572627 +0.0133195574662 0.00364103194931 0.13 20 -52.5283424577 +0.0133195574662 0.00409491506238 0.13 20 -52.6022514156 +0.0133195574662 0.00460537825582 0.13 20 -52.6857038731 +0.0133195574662 0.00517947467923 0.13 20 -52.7799778722 +0.0133195574662 0.00582513671247 0.13 20 -52.8865345694 +0.0133195574662 0.0065512855686 0.13 20 -53.0070475304 +0.0133195574662 0.00736795455966 0.13 20 -53.1434374604 +0.0133195574662 0.00828642772855 0.13 20 -53.2979135503 +0.0133195574662 0.00931939576234 0.13 20 -53.4730229103 +0.0133195574662 0.0104811313415 0.13 20 -53.671709939 +0.0133195574662 0.0117876863479 0.13 20 -53.8973879507 +0.0133195574662 0.0132571136559 0.13 20 -54.1540260026 +0.0133195574662 0.0149097165718 0.13 20 -54.4462546529 +0.0133195574662 0.0167683293681 0.13 20 -54.7794954134 +0.0133195574662 0.0188586327877 0.13 20 -55.1601199974 +0.0133195574662 0.0212095088792 0.13 20 -55.5956472158 +0.0133195574662 0.0238534400643 0.13 20 -56.094987677 +0.0133195574662 0.0268269579528 0.13 20 -56.6687494811 +0.0133195574662 0.0301711481053 0.13 20 -57.3296221311 +0.0133195574662 0.033932217719 0.13 20 -58.0928612487 +0.0133195574662 0.0381621340795 0.13 20 -58.9769038809 +0.0133195574662 0.0429193426013 0.13 20 -60.0041538667 +0.0133195574662 0.0482695743768 0.13 20 -61.2019898553 +0.0133195574662 0.0542867543932 0.13 20 -62.6040664305 +0.0133195574662 0.0610540229659 0.13 20 -64.2520032727 +0.0133195574662 0.0686648845004 0.13 20 -66.1975910285 +0.0133195574662 0.0772244994584 0.13 20 -68.5056893906 +0.0133195574662 0.0868511373751 0.13 20 -71.2580583649 +0.0133195574662 0.0976778110089 0.13 20 -74.5584559972 +0.0133195574662 0.109854114199 0.13 20 -78.5394671354 +0.0133195574662 0.123548288826 0.13 20 -83.3717166016 +0.0133195574662 0.138949549437 0.13 20 -89.2763950398 +0.0133195574662 0.156270697655 0.13 20 -96.5424319626 +0.0133195574662 0.175751062485 0.13 20 -105.550261799 +0.0133195574662 0.19765980717 0.13 20 -116.805068652 +0.0133195574662 0.222299648253 0.13 20 -130.983878823 +0.0133195574662 0.250011038262 0.13 20 -149.003285093 +0.0133195574662 0.281176869797 0.13 20 -172.118665285 +0.0133195574662 0.316227766017 0.13 20 -202.072947701 +0.0152641796718 0.001 0.13 20 -52.103954206 +0.0152641796718 0.00112465782212 0.13 20 -52.1238142267 +0.0152641796718 0.00126485521686 0.13 20 -52.1461745646 +0.0152641796718 0.00142252931349 0.13 20 -52.1713534411 +0.0152641796718 0.00159985871961 0.13 20 -52.1997104858 +0.0152641796718 0.00179929362329 0.13 20 -52.2316523626 +0.0152641796718 0.00202358964773 0.13 20 -52.2676392213 +0.0152641796718 0.00227584592607 0.13 20 -52.3081921114 +0.0152641796718 0.0025595479227 0.13 20 -52.3539015212 +0.0152641796718 0.00287861559235 0.13 20 -52.4054372351 +0.0152641796718 0.00323745754282 0.13 20 -52.4635597455 +0.0152641796718 0.00364103194931 0.13 20 -52.529133499 +0.0152641796718 0.00409491506238 0.13 20 -52.6031423195 +0.0152641796718 0.00460537825582 0.13 20 -52.6867074243 +0.0152641796718 0.00517947467923 0.13 20 -52.7811085399 +0.0152641796718 0.00582513671247 0.13 20 -52.887808742 +0.0152641796718 0.0065512855686 0.13 20 -53.0084837863 +0.0152641796718 0.00736795455966 0.13 20 -53.1450568817 +0.0152641796718 0.00828642772855 0.13 20 -53.2997400867 +0.0152641796718 0.00931939576234 0.13 20 -53.4750838029 +0.0152641796718 0.0104811313415 0.13 20 -53.674036216 +0.0152641796718 0.0117876863479 0.13 20 -53.9000150094 +0.0152641796718 0.0132571136559 0.13 20 -54.1569942955 +0.0152641796718 0.0149097165718 0.13 20 -54.4496105007 +0.0152641796718 0.0167683293681 0.13 20 -54.7832919729 +0.0152641796718 0.0188586327877 0.13 20 -55.1644184204 +0.0152641796718 0.0212095088792 0.13 20 -55.6005180447 +0.0152641796718 0.0238534400643 0.13 20 -56.1005125351 +0.0152641796718 0.0268269579528 0.13 20 -56.6750231341 +0.0152641796718 0.0301711481053 0.13 20 -57.3367550166 +0.0152641796718 0.033932217719 0.13 20 -58.1009826031 +0.0152641796718 0.0381621340795 0.13 20 -58.9861656313 +0.0152641796718 0.0429193426013 0.13 20 -60.0147355109 +0.0152641796718 0.0482695743768 0.13 20 -61.214104627 +0.0152641796718 0.0542867543932 0.13 20 -62.6179691475 +0.0152641796718 0.0610540229659 0.13 20 -64.2680004028 +0.0152641796718 0.0686648845004 0.13 20 -66.2160537009 +0.0152641796718 0.0772244994584 0.13 20 -68.5270703435 +0.0152641796718 0.0868511373751 0.13 20 -71.2829141909 +0.0152641796718 0.0976778110089 0.13 20 -74.587476567 +0.0152641796718 0.109854114199 0.13 20 -78.5735148201 +0.0152641796718 0.123548288826 0.13 20 -83.4118789662 +0.0152641796718 0.138949549437 0.13 20 -89.3240562095 +0.0152641796718 0.156270697655 0.13 20 -96.5993700958 +0.0152641796718 0.175751062485 0.13 20 -105.618783431 +0.0152641796718 0.19765980717 0.13 20 -116.888195719 +0.0152641796718 0.222299648253 0.13 20 -131.085612038 +0.0152641796718 0.250011038262 0.13 20 -149.128979899 +0.0152641796718 0.281176869797 0.13 20 -172.275577473 +0.0152641796718 0.316227766017 0.13 20 -202.271041846 +0.0174927118744 0.001 0.13 20 -52.1041586826 +0.0174927118744 0.00112465782212 0.13 20 -52.1240442746 +0.0174927118744 0.00126485521686 0.13 20 -52.1464333932 +0.0174927118744 0.00142252931349 0.13 20 -52.1716446656 +0.0174927118744 0.00159985871961 0.13 20 -52.2000381794 +0.0174927118744 0.00179929362329 0.13 20 -52.2320211156 +0.0174927118744 0.00202358964773 0.13 20 -52.2680542079 +0.0174927118744 0.00227584592607 0.13 20 -52.3086591659 +0.0174927118744 0.0025595479227 0.13 20 -52.3544272239 +0.0174927118744 0.00287861559235 0.13 20 -52.4060290109 +0.0174927118744 0.00323745754282 0.13 20 -52.4642259751 +0.0174927118744 0.00364103194931 0.13 20 -52.5298836467 +0.0174927118744 0.00409491506238 0.13 20 -52.6039870787 +0.0174927118744 0.00460537825582 0.13 20 -52.6876588841 +0.0174927118744 0.00517947467923 0.13 20 -52.7821803759 +0.0174927118744 0.00582513671247 0.13 20 -52.889016436 +0.0174927118744 0.0065512855686 0.13 20 -53.0098448795 +0.0174927118744 0.00736795455966 0.13 20 -53.1465912664 +0.0174927118744 0.00828642772855 0.13 20 -53.3014703455 +0.0174927118744 0.00931939576234 0.13 20 -53.4770356022 +0.0174927118744 0.0104811313415 0.13 20 -53.6762387654 +0.0174927118744 0.0117876863479 0.13 20 -53.9025016001 +0.0174927118744 0.0132571136559 0.13 20 -54.1598029334 +0.0174927118744 0.0149097165718 0.13 20 -54.4527846547 +0.0174927118744 0.0167683293681 0.13 20 -54.7868814644 +0.0174927118744 0.0188586327877 0.13 20 -55.1684804846 +0.0174927118744 0.0212095088792 0.13 20 -55.6051186058 +0.0174927118744 0.0238534400643 0.13 20 -56.1057277473 +0.0174927118744 0.0268269579528 0.13 20 -56.6809412555 +0.0174927118744 0.0301711481053 0.13 20 -57.343478703 +0.0174927118744 0.033932217719 0.13 20 -58.1086317368 +0.0174927118744 0.0381621340795 0.13 20 -58.9948808327 +0.0174927118744 0.0429193426013 0.13 20 -60.0246825327 +0.0174927118744 0.0482695743768 0.13 20 -61.2254798933 +0.0174927118744 0.0542867543932 0.13 20 -62.6310067902 +0.0174927118744 0.0610540229659 0.13 20 -64.2829812708 +0.0174927118744 0.0686648845004 0.13 20 -66.2333169856 +0.0174927118744 0.0772244994584 0.13 20 -68.5470286986 +0.0174927118744 0.0868511373751 0.13 20 -71.3060735516 +0.0174927118744 0.0976778110089 0.13 20 -74.614462335 +0.0174927118744 0.109854114199 0.13 20 -78.6051067311 +0.0174927118744 0.123548288826 0.13 20 -83.4490578929 +0.0174927118744 0.138949549437 0.13 20 -89.3680674992 +0.0174927118744 0.156270697655 0.13 20 -96.6518100205 +0.0174927118744 0.175751062485 0.13 20 -105.681718266 +0.0174927118744 0.19765980717 0.13 20 -116.964327432 +0.0174927118744 0.222299648253 0.13 20 -131.178511498 +0.0174927118744 0.250011038262 0.13 20 -149.243419627 +0.0174927118744 0.281176869797 0.13 20 -172.418014353 +0.0174927118744 0.316227766017 0.13 20 -202.450332039 +0.0200466042264 0.001 0.13 20 -52.104354468 +0.0200466042264 0.00112465782212 0.13 20 -52.1242645383 +0.0200466042264 0.00126485521686 0.13 20 -52.1466812057 +0.0200466042264 0.00142252931349 0.13 20 -52.1719234854 +0.0200466042264 0.00159985871961 0.13 20 -52.2003519026 +0.0200466042264 0.00179929362329 0.13 20 -52.232374132 +0.0200466042264 0.00202358964773 0.13 20 -52.2684514651 +0.0200466042264 0.00227584592607 0.13 20 -52.3091062414 +0.0200466042264 0.0025595479227 0.13 20 -52.3549304071 +0.0200466042264 0.00287861559235 0.13 20 -52.4065953964 +0.0200466042264 0.00323745754282 0.13 20 -52.4648635691 +0.0200466042264 0.00364103194931 0.13 20 -52.5306014875 +0.0200466042264 0.00409491506238 0.13 20 -52.6047953748 +0.0200466042264 0.00460537825582 0.13 20 -52.6885691717 +0.0200466042264 0.00517947467923 0.13 20 -52.7832056998 +0.0200466042264 0.00582513671247 0.13 20 -52.8901715566 +0.0200466042264 0.0065512855686 0.13 20 -53.0111465112 +0.0200466042264 0.00736795455966 0.13 20 -53.1480583529 +0.0200466042264 0.00828642772855 0.13 20 -53.3031243774 +0.0200466042264 0.00931939576234 0.13 20 -53.4789009865 +0.0200466042264 0.0104811313415 0.13 20 -53.6783432551 +0.0200466042264 0.0117876863479 0.13 20 -53.9048767965 +0.0200466042264 0.0132571136559 0.13 20 -54.1624848757 +0.0200466042264 0.0149097165718 0.13 20 -54.4558145154 +0.0200466042264 0.0167683293681 0.13 20 -54.7903063724 +0.0200466042264 0.0188586327877 0.13 20 -55.1723545064 +0.0200466042264 0.0212095088792 0.13 20 -55.6095039201 +0.0200466042264 0.0238534400643 0.13 20 -56.1106960606 +0.0200466042264 0.0268269579528 0.13 20 -56.6865755181 +0.0200466042264 0.0301711481053 0.13 20 -57.3498752049 +0.0200466042264 0.033932217719 0.13 20 -58.1159026824 +0.0200466042264 0.0381621340795 0.13 20 -59.0031575309 +0.0200466042264 0.0429193426013 0.13 20 -60.0341193758 +0.0200466042264 0.0482695743768 0.13 20 -61.2362593595 +0.0200466042264 0.0542867543932 0.13 20 -62.6433457834 +0.0200466042264 0.0610540229659 0.13 20 -64.2971392178 +0.0200466042264 0.0686648845004 0.13 20 -66.2496062619 +0.0200466042264 0.0772244994584 0.13 20 -68.5658281604 +0.0200466042264 0.0868511373751 0.13 20 -71.3278462412 +0.0200466042264 0.0976778110089 0.13 20 -74.6397788333 +0.0200466042264 0.109854114199 0.13 20 -78.6346762074 +0.0200466042264 0.123548288826 0.13 20 -83.4837697271 +0.0200466042264 0.138949549437 0.13 20 -89.4090475414 +0.0200466042264 0.156270697655 0.13 20 -96.7004972994 +0.0200466042264 0.175751062485 0.13 20 -105.739970551 +0.0200466042264 0.19765980717 0.13 20 -117.034567992 +0.0200466042264 0.222299648253 0.13 20 -131.263935515 +0.0200466042264 0.250011038262 0.13 20 -149.348288503 +0.0200466042264 0.281176869797 0.13 20 -172.548082387 +0.0200466042264 0.316227766017 0.13 20 -202.61347797 +0.022973358499 0.001 0.13 20 -52.1045436753 +0.022973358499 0.00112465782212 0.13 20 -52.1244773959 +0.022973358499 0.00126485521686 0.13 20 -52.1469206788 +0.022973358499 0.00142252931349 0.13 20 -52.1721929134 +0.022973358499 0.00159985871961 0.13 20 -52.2006550469 +0.022973358499 0.00179929362329 0.13 20 -52.2327152303 +0.022973358499 0.00202358964773 0.13 20 -52.2688352925 +0.022973358499 0.00227584592607 0.13 20 -52.3095381799 +0.022973358499 0.0025595479227 0.13 20 -52.3554165246 +0.022973358499 0.00287861559235 0.13 20 -52.4071425361 +0.022973358499 0.00323745754282 0.13 20 -52.465479451 +0.022973358499 0.00364103194931 0.13 20 -52.5312948246 +0.022973358499 0.00409491506238 0.13 20 -52.6055760047 +0.022973358499 0.00460537825582 0.13 20 -52.6894482076 +0.022973358499 0.00517947467923 0.13 20 -52.7841957027 +0.022973358499 0.00582513671247 0.13 20 -52.891286733 +0.022973358499 0.0065512855686 0.13 20 -53.0124029396 +0.022973358499 0.00736795455966 0.13 20 -53.1494742458 +0.022973358499 0.00828642772855 0.13 20 -53.3047203823 +0.022973358499 0.00931939576234 0.13 20 -53.4807005356 +0.022973358499 0.0104811313415 0.13 20 -53.6803729714 +0.022973358499 0.0117876863479 0.13 20 -53.9071669668 +0.022973358499 0.0132571136559 0.13 20 -54.1650700053 +0.022973358499 0.0149097165718 0.13 20 -54.4587339797 +0.022973358499 0.0167683293681 0.13 20 -54.793605187 +0.022973358499 0.0188586327877 0.13 20 -55.1760842417 +0.022973358499 0.0212095088792 0.13 20 -55.6137237935 +0.022973358499 0.0238534400643 0.13 20 -56.1154742481 +0.022973358499 0.0268269579528 0.13 20 -56.6919907401 +0.022973358499 0.0301711481053 0.13 20 -57.3560186552 +0.022973358499 0.033932217719 0.13 20 -58.1228803929 +0.022973358499 0.0381621340795 0.13 20 -59.0110932889 +0.022973358499 0.0429193426013 0.13 20 -60.0431583531 +0.022973358499 0.0482695743768 0.13 20 -61.2465726608 +0.022973358499 0.0542867543932 0.13 20 -62.6551361922 +0.022973358499 0.0610540229659 0.13 20 -64.3106485152 +0.022973358499 0.0686648845004 0.13 20 -66.2651246238 +0.022973358499 0.0772244994584 0.13 20 -68.5837063242 +0.022973358499 0.0868511373751 0.13 20 -71.3485113864 +0.022973358499 0.0976778110089 0.13 20 -74.6637554828 +0.022973358499 0.109854114199 0.13 20 -78.6626139639 +0.022973358499 0.123548288826 0.13 20 -83.5164803868 +0.022973358499 0.138949549437 0.13 20 -89.4475551818 +0.022973358499 0.156270697655 0.13 20 -96.7461064766 +0.022973358499 0.175751062485 0.13 20 -105.794360034 +0.022973358499 0.19765980717 0.13 20 -117.099920933 +0.022973358499 0.222299648253 0.13 20 -131.343122362 +0.022973358499 0.250011038262 0.13 20 -149.445127583 +0.022973358499 0.281176869797 0.13 20 -172.667717399 +0.022973358499 0.316227766017 0.13 20 -202.762936349 +0.0263274116037 0.001 0.13 20 -52.1047280447 +0.0263274116037 0.00112465782212 0.13 20 -52.1246848057 +0.0263274116037 0.00126485521686 0.13 20 -52.1471540166 +0.0263274116037 0.00142252931349 0.13 20 -52.1724554305 +0.0263274116037 0.00159985871961 0.13 20 -52.2009504052 +0.0263274116037 0.00179929362329 0.13 20 -52.2330475547 +0.0263274116037 0.00202358964773 0.13 20 -52.2692092304 +0.0263274116037 0.00227584592607 0.13 20 -52.3099589685 +0.0263274116037 0.0025595479227 0.13 20 -52.3558900672 +0.0263274116037 0.00287861559235 0.13 20 -52.4076754888 +0.0263274116037 0.00323745754282 0.13 20 -52.4660793212 +0.0263274116037 0.00364103194931 0.13 20 -52.5319700825 +0.0263274116037 0.00409491506238 0.13 20 -52.6063362112 +0.0263274116037 0.00460537825582 0.13 20 -52.6903041592 +0.0263274116037 0.00517947467923 0.13 20 -52.7851595978 +0.0263274116037 0.00582513671247 0.13 20 -52.8923723617 +0.0263274116037 0.0065512855686 0.13 20 -53.0136259019 +0.0263274116037 0.00736795455966 0.13 20 -53.1508522017 +0.0263274116037 0.00828642772855 0.13 20 -53.306273341 +0.0263274116037 0.00931939576234 0.13 20 -53.4824511888 +0.0263274116037 0.0104811313415 0.13 20 -53.6823470805 +0.0263274116037 0.0117876863479 0.13 20 -53.9093938132 +0.0263274116037 0.0132571136559 0.13 20 -54.1675829161 +0.0263274116037 0.0149097165718 0.13 20 -54.4615709445 +0.0263274116037 0.0167683293681 0.13 20 -54.7968095845 +0.0263274116037 0.0188586327877 0.13 20 -55.1797057002 +0.0263274116037 0.0212095088792 0.13 20 -55.617819215 +0.0263274116037 0.0238534400643 0.13 20 -56.1201090344 +0.0263274116037 0.0268269579528 0.13 20 -56.6972402702 +0.0263274116037 0.0301711481053 0.13 20 -57.3619700765 +0.0263274116037 0.033932217719 0.13 20 -58.1296348079 +0.0263274116037 0.0381621340795 0.13 20 -59.0187684457 +0.0263274116037 0.0429193426013 0.13 20 -60.0518919782 +0.0263274116037 0.0482695743768 0.13 20 -61.256526623 +0.0263274116037 0.0542867543932 0.13 20 -62.6665017443 +0.0263274116037 0.0610540229659 0.13 20 -64.3236529481 +0.0263274116037 0.0686648845004 0.13 20 -66.2800397844 +0.0263274116037 0.0772244994584 0.13 20 -68.6008596091 +0.0263274116037 0.0868511373751 0.13 20 -71.3683000531 +0.0263274116037 0.0976778110089 0.13 20 -74.6866654355 +0.0263274116037 0.109854114199 0.13 20 -78.6892446234 +0.0263274116037 0.123548288826 0.13 20 -83.5475778988 +0.0263274116037 0.138949549437 0.13 20 -89.4840571472 +0.0263274116037 0.156270697655 0.13 20 -96.7892027514 +0.0263274116037 0.175751062485 0.13 20 -105.845576173 +0.0263274116037 0.19765980717 0.13 20 -117.161233927 +0.0263274116037 0.222299648253 0.13 20 -131.417123084 +0.0263274116037 0.250011038262 0.13 20 -149.535252019 +0.0263274116037 0.281176869797 0.13 20 -172.778581365 +0.0263274116037 0.316227766017 0.13 20 -202.900830274 +0.0301711481053 0.001 0.13 20 -52.1049088521 +0.0301711481053 0.00112465782212 0.13 20 -52.1248882038 +0.0301711481053 0.00126485521686 0.13 20 -52.1473828352 +0.0301711481053 0.00142252931349 0.13 20 -52.1727128559 +0.0301711481053 0.00159985871961 0.13 20 -52.2012400255 +0.0301711481053 0.00179929362329 0.13 20 -52.2333734111 +0.0301711481053 0.00202358964773 0.13 20 -52.2695758752 +0.0301711481053 0.00227584592607 0.13 20 -52.3103715311 +0.0301711481053 0.0025595479227 0.13 20 -52.3563543284 +0.0301711481053 0.00287861559235 0.13 20 -52.4081979651 +0.0301711481053 0.00323745754282 0.13 20 -52.4666673606 +0.0301711481053 0.00364103194931 0.13 20 -52.5326319737 +0.0301711481053 0.00409491506238 0.13 20 -52.607081307 +0.0301711481053 0.00460537825582 0.13 20 -52.691143018 +0.0301711481053 0.00517947467923 0.13 20 -52.7861041444 +0.0301711481053 0.00582513671247 0.13 20 -52.8934360714 +0.0301711481053 0.0065512855686 0.13 20 -53.0148240111 +0.0301711481053 0.00736795455966 0.13 20 -53.1522019501 +0.0301711481053 0.00828642772855 0.13 20 -53.3077942497 +0.0301711481053 0.00931939576234 0.13 20 -53.4841653819 +0.0301711481053 0.0104811313415 0.13 20 -53.684279656 +0.0301711481053 0.0117876863479 0.13 20 -53.911573275 +0.0301711481053 0.0132571136559 0.13 20 -54.170041676 +0.0301711481053 0.0149097165718 0.13 20 -54.4643459105 +0.0301711481053 0.0167683293681 0.13 20 -54.7999428514 +0.0301711481053 0.0188586327877 0.13 20 -55.1832453649 +0.0301711481053 0.0212095088792 0.13 20 -55.621820344 +0.0301711481053 0.0238534400643 0.13 20 -56.1246348185 +0.0301711481053 0.0268269579528 0.13 20 -56.7023634103 +0.0301711481053 0.0301711481053 0.13 20 -57.3677744579 +0.0301711481053 0.033932217719 0.13 20 -58.1362175377 +0.0301711481053 0.0381621340795 0.13 20 -59.0262423481 +0.0301711481053 0.0429193426013 0.13 20 -60.060388676 +0.0301711481053 0.0482695743768 0.13 20 -61.266200371 +0.0301711481053 0.0542867543932 0.13 20 -62.6775342379 +0.0301711481053 0.0610540229659 0.13 20 -64.3362594059 +0.0301711481053 0.0686648845004 0.13 20 -66.2944767052 +0.0301711481053 0.0772244994584 0.13 20 -68.6174347519 +0.0301711481053 0.0868511373751 0.13 20 -71.3873853863 +0.0301711481053 0.0976778110089 0.13 20 -74.7087140858 +0.0301711481053 0.109854114199 0.13 20 -78.7148132533 +0.0301711481053 0.123548288826 0.13 20 -83.5773565129 +0.0301711481053 0.138949549437 0.13 20 -89.5189091543 +0.0301711481053 0.156270697655 0.13 20 -96.8302193145 +0.0301711481053 0.175751062485 0.13 20 -105.894150679 +0.0301711481053 0.19765980717 0.13 20 -117.219165133 +0.0301711481053 0.222299648253 0.13 20 -131.48675974 +0.0301711481053 0.250011038262 0.13 20 -149.619698536 +0.0301711481053 0.281176869797 0.13 20 -172.881995357 +0.0301711481053 0.316227766017 0.13 20 -203.028862202 +0.0345760605598 0.001 0.13 20 -52.1050869397 +0.0345760605598 0.00112465782212 0.13 20 -52.125088538 +0.0345760605598 0.00126485521686 0.13 20 -52.1476082015 +0.0345760605598 0.00142252931349 0.13 20 -52.1729663905 +0.0345760605598 0.00159985871961 0.13 20 -52.2015252596 +0.0345760605598 0.00179929362329 0.13 20 -52.2336943213 +0.0345760605598 0.00202358964773 0.13 20 -52.2699369408 +0.0345760605598 0.00227584592607 0.13 20 -52.310777798 +0.0345760605598 0.0025595479227 0.13 20 -52.3568114825 +0.0345760605598 0.00287861559235 0.13 20 -52.4087124145 +0.0345760605598 0.00323745754282 0.13 20 -52.46724633 +0.0345760605598 0.00364103194931 0.13 20 -52.5332836099 +0.0345760605598 0.00409491506238 0.13 20 -52.6078148009 +0.0345760605598 0.00460537825582 0.13 20 -52.6919687414 +0.0345760605598 0.00517947467923 0.13 20 -52.7870338074 +0.0345760605598 0.00582513671247 0.13 20 -52.8944829014 +0.0345760605598 0.0065512855686 0.13 20 -53.0160029578 +0.0345760605598 0.00736795455966 0.13 20 -53.1535299203 +0.0345760605598 0.00828642772855 0.13 20 -53.3092903767 +0.0345760605598 0.00931939576234 0.13 20 -53.4858513365 +0.0345760605598 0.0104811313415 0.13 20 -53.6861800048 +0.0345760605598 0.0117876863479 0.13 20 -53.913715896 +0.0345760605598 0.0132571136559 0.13 20 -54.1724582413 +0.0345760605598 0.0149097165718 0.13 20 -54.4670724497 +0.0345760605598 0.0167683293681 0.13 20 -54.8030204116 +0.0345760605598 0.0188586327877 0.13 20 -55.1867207872 +0.0345760605598 0.0212095088792 0.13 20 -55.6257471824 +0.0345760605598 0.0238534400643 0.13 20 -56.1290744324 +0.0345760605598 0.0268269579528 0.13 20 -56.7073862712 +0.0345760605598 0.0301711481053 0.13 20 -57.3734617225 +0.0345760605598 0.033932217719 0.13 20 -58.1426629539 +0.0345760605598 0.0381621340795 0.13 20 -59.0335545812 +0.0345760605598 0.0429193426013 0.13 20 -60.0686941691 +0.0345760605598 0.0482695743768 0.13 20 -61.2756468892 +0.0345760605598 0.0542867543932 0.13 20 -62.6882952968 +0.0345760605598 0.0610540229659 0.13 20 -64.34853985 +0.0345760605598 0.0686648845004 0.13 20 -66.3085197965 +0.0345760605598 0.0772244994584 0.13 20 -68.6335312553 +0.0345760605598 0.0868511373751 0.13 20 -71.4058853183 +0.0345760605598 0.0976778110089 0.13 20 -74.7300420414 +0.0345760605598 0.109854114199 0.13 20 -78.7394885825 +0.0345760605598 0.123548288826 0.13 20 -83.6060201245 +0.0345760605598 0.138949549437 0.13 20 -89.5523594547 +0.0345760605598 0.156270697655 0.13 20 -96.8694608645 +0.0345760605598 0.175751062485 0.13 20 -105.940460747 +0.0345760605598 0.19765980717 0.13 20 -117.274185746 +0.0345760605598 0.222299648253 0.13 20 -131.552626609 +0.0345760605598 0.250011038262 0.13 20 -149.69922427 +0.0345760605598 0.281176869797 0.13 20 -172.978934402 +0.0345760605598 0.316227766017 0.13 20 -203.148302287 +0.0396240792581 0.001 0.13 20 -52.1052628663 +0.0396240792581 0.00112465782212 0.13 20 -52.125286437 +0.0396240792581 0.00126485521686 0.13 20 -52.1478308232 +0.0396240792581 0.00142252931349 0.13 20 -52.1732168308 +0.0396240792581 0.00159985871961 0.13 20 -52.2018070041 +0.0396240792581 0.00179929362329 0.13 20 -52.234011295 +0.0396240792581 0.00202358964773 0.13 20 -52.2702935638 +0.0396240792581 0.00227584592607 0.13 20 -52.3111790492 +0.0396240792581 0.0025595479227 0.13 20 -52.357262971 +0.0396240792581 0.00287861559235 0.13 20 -52.4092204611 +0.0396240792581 0.00323745754282 0.13 20 -52.4678180588 +0.0396240792581 0.00364103194931 0.13 20 -52.5339270532 +0.0396240792581 0.00409491506238 0.13 20 -52.6085390171 +0.0396240792581 0.00460537825582 0.13 20 -52.6927839502 +0.0396240792581 0.00517947467923 0.13 20 -52.7879515431 +0.0396240792581 0.00582513671247 0.13 20 -52.8955161878 +0.0396240792581 0.0065512855686 0.13 20 -53.0171665082 +0.0396240792581 0.00736795455966 0.13 20 -53.1548403656 +0.0396240792581 0.00828642772855 0.13 20 -53.3107665284 +0.0396240792581 0.00931939576234 0.13 20 -53.4875144872 +0.0396240792581 0.0104811313415 0.13 20 -53.6880542761 +0.0396240792581 0.0117876863479 0.13 20 -53.9158286395 +0.0396240792581 0.0132571136559 0.13 20 -54.1748405042 +0.0396240792581 0.0149097165718 0.13 20 -54.469759516 +0.0396240792581 0.0167683293681 0.13 20 -54.806052435 +0.0396240792581 0.0188586327877 0.13 20 -55.1901435333 +0.0396240792581 0.0212095088792 0.13 20 -55.6296129036 +0.0396240792581 0.0238534400643 0.13 20 -56.1334429049 +0.0396240792581 0.0268269579528 0.13 20 -56.712326031 +0.0396240792581 0.0301711481053 0.13 20 -57.3790515468 +0.0396240792581 0.033932217719 0.13 20 -58.1489936497 +0.0396240792581 0.0381621340795 0.13 20 -59.0407311583 +0.0396240792581 0.0429193426013 0.13 20 -60.0768385015 +0.0396240792581 0.0482695743768 0.13 20 -61.2849009983 +0.0396240792581 0.0542867543932 0.13 20 -62.6988254363 +0.0396240792581 0.0610540229659 0.13 20 -64.3605416296 +0.0396240792581 0.0686648845004 0.13 20 -66.3222246666 +0.0396240792581 0.0772244994584 0.13 20 -68.6492147851 +0.0396240792581 0.0868511373751 0.13 20 -71.4238778603 +0.0396240792581 0.0976778110089 0.13 20 -74.7507425957 +0.0396240792581 0.109854114199 0.13 20 -78.7633829894 +0.0396240792581 0.123548288826 0.13 20 -83.6337051612 +0.0396240792581 0.138949549437 0.13 20 -89.5845750631 +0.0396240792581 0.156270697655 0.13 20 -96.9071336871 +0.0396240792581 0.175751062485 0.13 20 -105.984763566 +0.0396240792581 0.19765980717 0.13 20 -117.326619577 +0.0396240792581 0.222299648253 0.13 20 -131.615135563 +0.0396240792581 0.250011038262 0.13 20 -149.774358679 +0.0396240792581 0.281176869797 0.13 20 -173.070086678 +0.0396240792581 0.316227766017 0.13 20 -203.260055486 +0.0454090961097 0.001 0.13 20 -52.1054371303 +0.0454090961097 0.00112465782212 0.13 20 -52.1254824618 +0.0454090961097 0.00126485521686 0.13 20 -52.1480513313 +0.0454090961097 0.00142252931349 0.13 20 -52.1734648868 +0.0454090961097 0.00159985871961 0.13 20 -52.202086058 +0.0454090961097 0.00179929362329 0.13 20 -52.2343252311 +0.0454090961097 0.00202358964773 0.13 20 -52.270646756 +0.0454090961097 0.00227584592607 0.13 20 -52.3115764235 +0.0454090961097 0.0025595479227 0.13 20 -52.357710076 +0.0454090961097 0.00287861559235 0.13 20 -52.409723548 +0.0454090961097 0.00323745754282 0.13 20 -52.4683841722 +0.0454090961097 0.00364103194931 0.13 20 -52.5345641332 +0.0454090961097 0.00409491506238 0.13 20 -52.6092560163 +0.0454090961097 0.00460537825582 0.13 20 -52.6935909657 +0.0454090961097 0.00517947467923 0.13 20 -52.7888599668 +0.0454090961097 0.00582513671247 0.13 20 -52.8965388779 +0.0454090961097 0.0065512855686 0.13 20 -53.0183179842 +0.0454090961097 0.00736795455966 0.13 20 -53.1561370322 +0.0454090961097 0.00828642772855 0.13 20 -53.3122269302 +0.0454090961097 0.00931939576234 0.13 20 -53.4891596023 +0.0454090961097 0.0104811313415 0.13 20 -53.6899078531 +0.0454090961097 0.0117876863479 0.13 20 -53.9179175862 +0.0454090961097 0.0132571136559 0.13 20 -54.1771953372 +0.0454090961097 0.0149097165718 0.13 20 -54.4724148825 +0.0454090961097 0.0167683293681 0.13 20 -54.8090477204 +0.0454090961097 0.0188586327877 0.13 20 -55.193523572 +0.0454090961097 0.0212095088792 0.13 20 -55.6334288142 +0.0454090961097 0.0238534400643 0.13 20 -56.1377530761 +0.0454090961097 0.0268269579528 0.13 20 -56.7171972917 +0.0454090961097 0.0301711481053 0.13 20 -57.3845605645 +0.0454090961097 0.033932217719 0.13 20 -58.1552286094 +0.0454090961097 0.0381621340795 0.13 20 -59.0477937952 +0.0454090961097 0.0429193426013 0.13 20 -60.0848465778 +0.0454090961097 0.0482695743768 0.13 20 -61.2939913457 +0.0454090961097 0.0542867543932 0.13 20 -62.7091577227 +0.0454090961097 0.0610540229659 0.13 20 -64.3723030641 +0.0454090961097 0.0686648845004 0.13 20 -66.3356359253 +0.0454090961097 0.0772244994584 0.13 20 -68.6645375449 +0.0454090961097 0.0868511373751 0.13 20 -71.4414244631 +0.0454090961097 0.0976778110089 0.13 20 -74.7708885655 +0.0454090961097 0.109854114199 0.13 20 -78.7865833972 +0.0454090961097 0.123548288826 0.13 20 -83.6605162328 +0.0454090961097 0.138949549437 0.13 20 -89.6156829955 +0.0454090961097 0.156270697655 0.13 20 -96.9433934815 +0.0454090961097 0.175751062485 0.13 20 -106.027251941 +0.0454090961097 0.19765980717 0.13 20 -117.376707936 +0.0454090961097 0.222299648253 0.13 20 -131.674591978 +0.0454090961097 0.250011038262 0.13 20 -149.845492648 +0.0454090961097 0.281176869797 0.13 20 -173.155958426 +0.0454090961097 0.316227766017 0.13 20 -203.36478546 +0.0520387110088 0.001 0.13 20 -52.1056104043 +0.0520387110088 0.00112465782212 0.13 20 -52.1256773688 +0.0520387110088 0.00126485521686 0.13 20 -52.1482705767 +0.0520387110088 0.00142252931349 0.13 20 -52.1737115157 +0.0520387110088 0.00159985871961 0.13 20 -52.2023634981 +0.0520387110088 0.00179929362329 0.13 20 -52.234637341 +0.0520387110088 0.00202358964773 0.13 20 -52.2709978801 +0.0520387110088 0.00227584592607 0.13 20 -52.3119714538 +0.0520387110088 0.0025595479227 0.13 20 -52.3581545219 +0.0520387110088 0.00287861559235 0.13 20 -52.4102236156 +0.0520387110088 0.00323745754282 0.13 20 -52.4689468531 +0.0520387110088 0.00364103194931 0.13 20 -52.5351973066 +0.0520387110088 0.00409491506238 0.13 20 -52.609968563 +0.0520387110088 0.00460537825582 0.13 20 -52.694392899 +0.0520387110088 0.00517947467923 0.13 20 -52.7897625801 +0.0520387110088 0.00582513671247 0.13 20 -52.897554913 +0.0520387110088 0.0065512855686 0.13 20 -53.0194618233 +0.0520387110088 0.00736795455966 0.13 20 -53.1574249159 +0.0520387110088 0.00828642772855 0.13 20 -53.313677208 +0.0520387110088 0.00931939576234 0.13 20 -53.4907930182 +0.0520387110088 0.0104811313415 0.13 20 -53.6917478741 +0.0520387110088 0.0117876863479 0.13 20 -53.9199907796 +0.0520387110088 0.0132571136559 0.13 20 -54.1795318066 +0.0520387110088 0.0149097165718 0.13 20 -54.4750487716 +0.0520387110088 0.0167683293681 0.13 20 -54.8120177983 +0.0520387110088 0.0188586327877 0.13 20 -55.1968739156 +0.0520387110088 0.0212095088792 0.13 20 -55.6372096066 +0.0520387110088 0.0238534400643 0.13 20 -56.1420215459 +0.0520387110088 0.0268269579528 0.13 20 -56.7220188235 +0.0520387110088 0.0301711481053 0.13 20 -57.3900100185 +0.0520387110088 0.033932217719 0.13 20 -58.1613919005 +0.0520387110088 0.0381621340795 0.13 20 -59.0547697943 +0.0520387110088 0.0429193426013 0.13 20 -60.0927494173 +0.0520387110088 0.0482695743768 0.13 20 -61.3029532369 +0.0520387110088 0.0542867543932 0.13 20 -62.7193324273 +0.0520387110088 0.0610540229659 0.13 20 -64.3838702057 +0.0520387110088 0.0686648845004 0.13 20 -66.3488063951 +0.0520387110088 0.0772244994584 0.13 20 -68.6795603383 +0.0520387110088 0.0868511373751 0.13 20 -71.458595411 +0.0520387110088 0.0976778110089 0.13 20 -74.7905615911 +0.0520387110088 0.109854114199 0.13 20 -78.8091851747 +0.0520387110088 0.123548288826 0.13 20 -83.6865654703 +0.0520387110088 0.138949549437 0.13 20 -89.6458160657 +0.0520387110088 0.156270697655 0.13 20 -96.9783988645 +0.0520387110088 0.175751062485 0.13 20 -106.068117043 +0.0520387110088 0.19765980717 0.13 20 -117.424683536 +0.0520387110088 0.222299648253 0.13 20 -131.731282178 +0.0520387110088 0.250011038262 0.13 20 -149.912982469 +0.0520387110088 0.281176869797 0.13 20 -173.236998271 +0.0520387110088 0.316227766017 0.13 20 -203.463064071 +0.0596362331659 0.001 0.13 20 -52.1057837352 +0.0596362331659 0.00112465782212 0.13 20 -52.1258723354 +0.0596362331659 0.00126485521686 0.13 20 -52.1484898839 +0.0596362331659 0.00142252931349 0.13 20 -52.1739582073 +0.0596362331659 0.00159985871961 0.13 20 -52.202641 +0.0596362331659 0.00179929362329 0.13 20 -52.2349495095 +0.0596362331659 0.00202358964773 0.13 20 -52.2713490563 +0.0596362331659 0.00227584592607 0.13 20 -52.3123665252 +0.0596362331659 0.0025595479227 0.13 20 -52.3585989919 +0.0596362331659 0.00287861559235 0.13 20 -52.4107236821 +0.0596362331659 0.00323745754282 0.13 20 -52.4695094973 +0.0596362331659 0.00364103194931 0.13 20 -52.5358303934 +0.0596362331659 0.00409491506238 0.13 20 -52.6106809553 +0.0596362331659 0.00460537825582 0.13 20 -52.695194586 +0.0596362331659 0.00517947467923 0.13 20 -52.7906648244 +0.0596362331659 0.00582513671247 0.13 20 -52.8985704164 +0.0596362331659 0.0065512855686 0.13 20 -53.0206049161 +0.0596362331659 0.00736795455966 0.13 20 -53.1587117722 +0.0596362331659 0.00828642772855 0.13 20 -53.3151260911 +0.0596362331659 0.00931939576234 0.13 20 -53.4924245616 +0.0596362331659 0.0104811313415 0.13 20 -53.6935854025 +0.0596362331659 0.0117876863479 0.13 20 -53.9220606777 +0.0596362331659 0.0132571136559 0.13 20 -54.1818639431 +0.0596362331659 0.0149097165718 0.13 20 -54.4776769886 +0.0596362331659 0.0167683293681 0.13 20 -54.8149804776 +0.0596362331659 0.0188586327877 0.13 20 -55.200214636 +0.0596362331659 0.0212095088792 0.13 20 -55.6409779111 +0.0596362331659 0.0238534400643 0.13 20 -56.1462738392 +0.0596362331659 0.0268269579528 0.13 20 -56.726819429 +0.0596362331659 0.0301711481053 0.13 20 -57.3954324283 +0.0596362331659 0.033932217719 0.13 20 -58.1675202628 +0.0596362331659 0.0381621340795 0.13 20 -59.0617006955 +0.0596362331659 0.0429193426013 0.13 20 -60.10059403 +0.0596362331659 0.0482695743768 0.13 20 -61.3118399309 +0.0596362331659 0.0542867543932 0.13 20 -62.7294099661 +0.0596362331659 0.0610540229659 0.13 20 -64.3953116954 +0.0596362331659 0.0686648845004 0.13 20 -66.3618142045 +0.0596362331659 0.0772244994584 0.13 20 -68.6943722873 +0.0596362331659 0.0868511373751 0.13 20 -71.475492629 +0.0596362331659 0.0976778110089 0.13 20 -74.8098785959 +0.0596362331659 0.109854114199 0.13 20 -78.8313229333 +0.0596362331659 0.123548288826 0.13 20 -83.7120084998 +0.0596362331659 0.138949549437 0.13 20 -89.6751550735 +0.0596362331659 0.156270697655 0.13 20 -97.0123610602 +0.0596362331659 0.175751062485 0.13 20 -106.107607216 +0.0596362331659 0.19765980717 0.13 20 -117.470840457 +0.0596362331659 0.222299648253 0.13 20 -131.785557166 +0.0596362331659 0.250011038262 0.13 20 -149.977250703 +0.0596362331659 0.281176869797 0.13 20 -173.313719621 +0.0596362331659 0.316227766017 0.13 20 -203.555521153 +0.0683429746295 0.001 0.13 20 -52.1059586905 +0.0683429746295 0.00112465782212 0.13 20 -52.1260691251 +0.0683429746295 0.00126485521686 0.13 20 -52.1487112362 +0.0683429746295 0.00142252931349 0.13 20 -52.1742071925 +0.0683429746295 0.00159985871961 0.13 20 -52.2029210733 +0.0683429746295 0.00179929362329 0.13 20 -52.2352645595 +0.0683429746295 0.00202358964773 0.13 20 -52.2717034601 +0.0683429746295 0.00227584592607 0.13 20 -52.3127652099 +0.0683429746295 0.0025595479227 0.13 20 -52.3590475045 +0.0683429746295 0.00287861559235 0.13 20 -52.4112282684 +0.0683429746295 0.00323745754282 0.13 20 -52.4700771909 +0.0683429746295 0.00364103194931 0.13 20 -52.5364691163 +0.0683429746295 0.00409491506238 0.13 20 -52.6113996317 +0.0683429746295 0.00460537825582 0.13 20 -52.6960032717 +0.0683429746295 0.00517947467923 0.13 20 -52.7915748524 +0.0683429746295 0.00582513671247 0.13 20 -52.899594563 +0.0683429746295 0.0065512855686 0.13 20 -53.0217575888 +0.0683429746295 0.00736795455966 0.13 20 -53.1600092239 +0.0683429746295 0.00828642772855 0.13 20 -53.3165866635 +0.0683429746295 0.00931939576234 0.13 20 -53.4940689629 +0.0683429746295 0.0104811313415 0.13 20 -53.6954370247 +0.0683429746295 0.0117876863479 0.13 20 -53.9241459595 +0.0683429746295 0.0132571136559 0.13 20 -54.1842127864 +0.0683429746295 0.0149097165718 0.13 20 -54.4803232372 +0.0683429746295 0.0167683293681 0.13 20 -54.8179624693 +0.0683429746295 0.0188586327877 0.13 20 -55.2035758419 +0.0683429746295 0.0212095088792 0.13 20 -55.6447676766 +0.0683429746295 0.0238534400643 0.13 20 -56.1505482491 +0.0683429746295 0.0268269579528 0.13 20 -56.7316423196 +0.0683429746295 0.0301711481053 0.13 20 -57.4008765786 +0.0683429746295 0.033932217719 0.13 20 -58.1736688046 +0.0683429746295 0.0381621340795 0.13 20 -59.0686487907 +0.0683429746295 0.0429193426013 0.13 20 -60.1084508818 +0.0683429746295 0.0482695743768 0.13 20 -61.3207312104 +0.0683429746295 0.0542867543932 0.13 20 -62.7394807642 +0.0683429746295 0.0610540229659 0.13 20 -64.4067301439 +0.0683429746295 0.0686648845004 0.13 20 -66.374775956 +0.0683429746295 0.0772244994584 0.13 20 -68.7091061118 +0.0683429746295 0.0868511373751 0.13 20 -71.4922674722 +0.0683429746295 0.0976778110089 0.13 20 -74.8290125732 +0.0683429746295 0.109854114199 0.13 20 -78.8531949112 +0.0683429746295 0.123548288826 0.13 20 -83.7370731733 +0.0683429746295 0.138949549437 0.13 20 -89.7039628175 +0.0683429746295 0.156270697655 0.13 20 -97.0455843796 +0.0683429746295 0.175751062485 0.13 20 -106.146076435 +0.0683429746295 0.19765980717 0.13 20 -117.515592533 +0.0683429746295 0.222299648253 0.13 20 -131.837903492 +0.0683429746295 0.250011038262 0.13 20 -150.038872916 +0.0683429746295 0.281176869797 0.13 20 -173.386807829 +0.0683429746295 0.316227766017 0.13 20 -203.642978368 +0.0783208786546 0.001 0.13 20 -52.1061374402 +0.0783208786546 0.00112465782212 0.13 20 -52.1262701783 +0.0783208786546 0.00126485521686 0.13 20 -52.1489373789 +0.0783208786546 0.00142252931349 0.13 20 -52.1744615594 +0.0783208786546 0.00159985871961 0.13 20 -52.2032071917 +0.0783208786546 0.00179929362329 0.13 20 -52.2355863989 +0.0783208786546 0.00202358964773 0.13 20 -52.2720654876 +0.0783208786546 0.00227584592607 0.13 20 -52.3131724535 +0.0783208786546 0.0025595479227 0.13 20 -52.359505624 +0.0783208786546 0.00287861559235 0.13 20 -52.4117436349 +0.0783208786546 0.00323745754282 0.13 20 -52.4706569778 +0.0783208786546 0.00364103194931 0.13 20 -52.5371214011 +0.0783208786546 0.00409491506238 0.13 20 -52.6121335114 +0.0783208786546 0.00460537825582 0.13 20 -52.6968289933 +0.0783208786546 0.00517947467923 0.13 20 -52.7925039607 +0.0783208786546 0.00582513671247 0.13 20 -52.9006400677 +0.0783208786546 0.0065512855686 0.13 20 -53.0229341543 +0.0783208786546 0.00736795455966 0.13 20 -53.1613333845 +0.0783208786546 0.00828642772855 0.13 20 -53.3180770681 +0.0783208786546 0.00931939576234 0.13 20 -53.4957466533 +0.0783208786546 0.0104811313415 0.13 20 -53.6973257525 +0.0783208786546 0.0117876863479 0.13 20 -53.9262725484 +0.0783208786546 0.0132571136559 0.13 20 -54.1866075459 +0.0783208786546 0.0149097165718 0.13 20 -54.4830204373 +0.0783208786546 0.0167683293681 0.13 20 -54.8210008858 +0.0783208786546 0.0188586327877 0.13 20 -55.2069993844 +0.0783208786546 0.0212095088792 0.13 20 -55.6486261152 +0.0783208786546 0.0238534400643 0.13 20 -56.1548980566 +0.0783208786546 0.0268269579528 0.13 20 -56.7365476529 +0.0783208786546 0.0301711481053 0.13 20 -57.4064104273 +0.0783208786546 0.033932217719 0.13 20 -58.1799143406 +0.0783208786546 0.0381621340795 0.13 20 -59.0757009652 +0.0783208786546 0.0429193426013 0.13 20 -60.116418325 +0.0783208786546 0.0482695743768 0.13 20 -61.3297385075 +0.0783208786546 0.0542867543932 0.13 20 -62.749671202 +0.0783208786546 0.0610540229659 0.13 20 -64.4182690523 +0.0783208786546 0.0686648845004 0.13 20 -66.3878548095 +0.0783208786546 0.0772244994584 0.13 20 -68.7239476087 +0.0783208786546 0.0868511373751 0.13 20 -71.5091318881 +0.0783208786546 0.0976778110089 0.13 20 -74.8482057901 +0.0783208786546 0.109854114199 0.13 20 -78.8750786731 +0.0783208786546 0.123548288826 0.13 20 -83.7620783352 +0.0783208786546 0.138949549437 0.13 20 -89.7326066626 +0.0783208786546 0.156270697655 0.13 20 -97.0784935363 +0.0783208786546 0.175751062485 0.13 20 -106.184017604 +0.0783208786546 0.19765980717 0.13 20 -117.55951428 +0.0783208786546 0.222299648253 0.13 20 -131.888994001 +0.0783208786546 0.250011038262 0.13 20 -150.098641253 +0.0783208786546 0.281176869797 0.13 20 -173.457200767 +0.0783208786546 0.316227766017 0.13 20 -203.726552729 +0.0897555318082 0.001 0.13 20 -52.1063227553 +0.0897555318082 0.00112465782212 0.13 20 -52.1264786124 +0.0897555318082 0.00126485521686 0.13 20 -52.1491718186 +0.0897555318082 0.00142252931349 0.13 20 -52.1747252526 +0.0897555318082 0.00159985871961 0.13 20 -52.2035037927 +0.0897555318082 0.00179929362329 0.13 20 -52.2359200195 +0.0897555318082 0.00202358964773 0.13 20 -52.2724407551 +0.0897555318082 0.00227584592607 0.13 20 -52.3135945748 +0.0897555318082 0.0025595479227 0.13 20 -52.3599804595 +0.0897555318082 0.00287861559235 0.13 20 -52.4122777808 +0.0897555318082 0.00323745754282 0.13 20 -52.4712578592 +0.0897555318082 0.00364103194931 0.13 20 -52.5377973772 +0.0897555318082 0.00409491506238 0.13 20 -52.612893994 +0.0897555318082 0.00460537825582 0.13 20 -52.6976845813 +0.0897555318082 0.00517947467923 0.13 20 -52.7934665913 +0.0897555318082 0.00582513671247 0.13 20 -52.9017231884 +0.0897555318082 0.0065512855686 0.13 20 -53.024152917 +0.0897555318082 0.00736795455966 0.13 20 -53.1627048654 +0.0897555318082 0.00828642772855 0.13 20 -53.3196205176 +0.0897555318082 0.00931939576234 0.13 20 -53.4974837793 +0.0897555318082 0.0104811313415 0.13 20 -53.6992810429 +0.0897555318082 0.0117876863479 0.13 20 -53.9284736381 +0.0897555318082 0.0132571136559 0.13 20 -54.1890856355 +0.0897555318082 0.0149097165718 0.13 20 -54.4858107713 +0.0897555318082 0.0167683293681 0.13 20 -54.8241433005 +0.0897555318082 0.0188586327877 0.13 20 -55.2105389365 +0.0897555318082 0.0212095088792 0.13 20 -55.6526138055 +0.0897555318082 0.0238534400643 0.13 20 -56.1593916656 +0.0897555318082 0.0268269579528 0.13 20 -56.7416127088 +0.0897555318082 0.0301711481053 0.13 20 -57.4121213321 +0.0897555318082 0.033932217719 0.13 20 -58.1863556859 +0.0897555318082 0.0381621340795 0.13 20 -59.0829690776 +0.0897555318082 0.0429193426013 0.13 20 -60.1246230905 +0.0897555318082 0.0482695743768 0.13 20 -61.3390055399 +0.0897555318082 0.0542867543932 0.13 20 -62.7601444375 +0.0897555318082 0.0610540229659 0.13 20 -64.430113877 +0.0897555318082 0.0686648845004 0.13 20 -66.4012618615 +0.0897555318082 0.0772244994584 0.13 20 -68.7391374407 +0.0897555318082 0.0868511373751 0.13 20 -71.5263607408 +0.0897555318082 0.0976778110089 0.13 20 -74.8677728133 +0.0897555318082 0.109854114199 0.13 20 -78.8973350569 +0.0897555318082 0.123548288826 0.13 20 -83.7874389876 +0.0897555318082 0.138949549437 0.13 20 -89.7615653237 +0.0897555318082 0.156270697655 0.13 20 -97.1116425916 +0.0897555318082 0.175751062485 0.13 20 -106.222074414 +0.0897555318082 0.19765980717 0.13 20 -117.603356689 +0.0897555318082 0.222299648253 0.13 20 -131.939709022 +0.0897555318082 0.250011038262 0.13 20 -150.157593086 +0.0897555318082 0.281176869797 0.13 20 -173.52612795 +0.0897555318082 0.316227766017 0.13 20 -203.807710662 +0.102859615834 0.001 0.13 20 -52.1065179049 +0.102859615834 0.00112465782212 0.13 20 -52.1266981045 +0.102859615834 0.00126485521686 0.13 20 -52.1494186919 +0.102859615834 0.00142252931349 0.13 20 -52.1750029257 +0.102859615834 0.00159985871961 0.13 20 -52.2038161115 +0.102859615834 0.00179929362329 0.13 20 -52.2362713115 +0.102859615834 0.00202358964773 0.13 20 -52.272835889 +0.102859615834 0.00227584592607 0.13 20 -52.3140390296 +0.102859615834 0.0025595479227 0.13 20 -52.3604804004 +0.102859615834 0.00287861559235 0.13 20 -52.4128401464 +0.102859615834 0.00323745754282 0.13 20 -52.4718904585 +0.102859615834 0.00364103194931 0.13 20 -52.5385090002 +0.102859615834 0.00409491506238 0.13 20 -52.6136945359 +0.102859615834 0.00460537825582 0.13 20 -52.6985851823 +0.102859615834 0.00517947467923 0.13 20 -52.7944797957 +0.102859615834 0.00582513671247 0.13 20 -52.9028631232 +0.102859615834 0.0065512855686 0.13 20 -53.0254354944 +0.102859615834 0.00736795455966 0.13 20 -53.1641480123 +0.102859615834 0.00828642772855 0.13 20 -53.3212444347 +0.102859615834 0.00931939576234 0.13 20 -53.4993112359 +0.102859615834 0.0104811313415 0.13 20 -53.7013377103 +0.102859615834 0.0117876863479 0.13 20 -53.9307884694 +0.102859615834 0.0132571136559 0.13 20 -54.1916912973 +0.102859615834 0.0149097165718 0.13 20 -54.4887441357 +0.102859615834 0.0167683293681 0.13 20 -54.8274460065 +0.102859615834 0.0188586327877 0.13 20 -55.214258033 +0.102859615834 0.0212095088792 0.13 20 -55.6568024877 +0.102859615834 0.0238534400643 0.13 20 -56.1641101221 +0.102859615834 0.0268269579528 0.13 20 -56.746929098 +0.102859615834 0.0301711481053 0.13 20 -57.4181129118 +0.102859615834 0.033932217719 0.13 20 -58.1931101261 +0.102859615834 0.0381621340795 0.13 20 -59.0905859902 +0.102859615834 0.0429193426013 0.13 20 -60.1332158242 +0.102859615834 0.0482695743768 0.13 20 -61.3487032945 +0.102859615834 0.0542867543932 0.13 20 -62.7710947721 +0.102859615834 0.0610540229659 0.13 20 -64.4424857045 +0.102859615834 0.0686648845004 0.13 20 -66.4152490511 +0.102859615834 0.0772244994584 0.13 20 -68.7549631887 +0.102859615834 0.0868511373751 0.13 20 -71.5442829199 +0.102859615834 0.0976778110089 0.13 20 -74.8880905844 +0.102859615834 0.109854114199 0.13 20 -78.920397127 +0.102859615834 0.123548288826 0.13 20 -83.8136540395 +0.102859615834 0.138949549437 0.13 20 -89.7914153471 +0.102859615834 0.156270697655 0.13 20 -97.1457001417 +0.102859615834 0.175751062485 0.13 20 -106.261025265 +0.102859615834 0.19765980717 0.13 20 -117.648030026 +0.102859615834 0.222299648253 0.13 20 -131.991118347 +0.102859615834 0.250011038262 0.13 20 -150.216992754 +0.102859615834 0.281176869797 0.13 20 -173.595093057 +0.102859615834 0.316227766017 0.13 20 -203.888253117 +0.117876863479 0.001 0.13 20 -52.1067264458 +0.117876863479 0.00112465782212 0.13 20 -52.1269326558 +0.117876863479 0.00126485521686 0.13 20 -52.1496824999 +0.117876863479 0.00142252931349 0.13 20 -52.1752996421 +0.117876863479 0.00159985871961 0.13 20 -52.2041498448 +0.117876863479 0.00179929362329 0.13 20 -52.2366466837 +0.117876863479 0.00202358964773 0.13 20 -52.2732581006 +0.117876863479 0.00227584592607 0.13 20 -52.3145139316 +0.117876863479 0.0025595479227 0.13 20 -52.3610145766 +0.117876863479 0.00287861559235 0.13 20 -52.4134410054 +0.117876863479 0.00323745754282 0.13 20 -52.4725663379 +0.117876863479 0.00364103194931 0.13 20 -52.5392692835 +0.117876863479 0.00409491506238 0.13 20 -52.6145497847 +0.117876863479 0.00460537825582 0.13 20 -52.6995472856 +0.117876863479 0.00517947467923 0.13 20 -52.7955621382 +0.117876863479 0.00582513671247 0.13 20 -52.9040807752 +0.117876863479 0.0065512855686 0.13 20 -53.0268054269 +0.117876863479 0.00736795455966 0.13 20 -53.1656893398 +0.117876863479 0.00828642772855 0.13 20 -53.3229786901 +0.117876863479 0.00931939576234 0.13 20 -53.5012626811 +0.117876863479 0.0104811313415 0.13 20 -53.7035336897 +0.117876863479 0.0117876863479 0.13 20 -53.9332598092 +0.117876863479 0.0132571136559 0.13 20 -54.1944727599 +0.117876863479 0.0149097165718 0.13 20 -54.4918749365 +0.117876863479 0.0167683293681 0.13 20 -54.8309704025 +0.117876863479 0.0188586327877 0.13 20 -55.2182259936 +0.117876863479 0.0212095088792 0.13 20 -55.6612704623 +0.117876863479 0.0238534400643 0.13 20 -56.1691419189 +0.117876863479 0.0268269579528 0.13 20 -56.7525968938 +0.117876863479 0.0301711481053 0.13 20 -57.4244984143 +0.117876863479 0.033932217719 0.13 20 -58.2003059172 +0.117876863479 0.0381621340795 0.13 20 -59.0986970844 +0.117876863479 0.0429193426013 0.13 20 -60.1423614824 +0.117876863479 0.0482695743768 0.13 20 -61.3590191469 +0.117876863479 0.0542867543932 0.13 20 -62.7827353151 +0.117876863479 0.0610540229659 0.13 20 -64.4556272554 +0.117876863479 0.0686648845004 0.13 20 -66.4300932671 +0.117876863479 0.0772244994584 0.13 20 -68.7717412892 +0.117876863479 0.0868511373751 0.13 20 -71.5632607938 +0.117876863479 0.0976778110089 0.13 20 -74.9095750232 +0.117876863479 0.109854114199 0.13 20 -78.9447435047 +0.117876863479 0.123548288826 0.13 20 -83.841275876 +0.117876863479 0.138949549437 0.13 20 -89.8227963528 +0.117876863479 0.156270697655 0.13 20 -97.1814095757 +0.117876863479 0.175751062485 0.13 20 -106.301737784 +0.117876863479 0.19765980717 0.13 20 -117.694551723 +0.117876863479 0.222299648253 0.13 20 -132.044421488 +0.117876863479 0.250011038262 0.13 20 -150.278263016 +0.117876863479 0.281176869797 0.13 20 -173.665795267 +0.117876863479 0.316227766017 0.13 20 -203.970225273 +0.135086591867 0.001 0.13 20 -52.1069519354 +0.135086591867 0.00112465782212 0.13 20 -52.1271862683 +0.135086591867 0.00126485521686 0.13 20 -52.1499677446 +0.135086591867 0.00142252931349 0.13 20 -52.1756204669 +0.135086591867 0.00159985871961 0.13 20 -52.2045106909 +0.135086591867 0.00179929362329 0.13 20 -52.2370525475 +0.135086591867 0.00202358964773 0.13 20 -52.2737146032 +0.135086591867 0.00227584592607 0.13 20 -52.3150273974 +0.135086591867 0.0025595479227 0.13 20 -52.3615921217 +0.135086591867 0.00287861559235 0.13 20 -52.4140906369 +0.135086591867 0.00323745754282 0.13 20 -52.473297066 +0.135086591867 0.00364103194931 0.13 20 -52.540091248 +0.135086591867 0.00409491506238 0.13 20 -52.6154743978 +0.135086591867 0.00460537825582 0.13 20 -52.7005873924 +0.135086591867 0.00517947467923 0.13 20 -52.7967321979 +0.135086591867 0.00582513671247 0.13 20 -52.9053970664 +0.135086591867 0.0065512855686 0.13 20 -53.0282862786 +0.135086591867 0.00736795455966 0.13 20 -53.1673553925 +0.135086591867 0.00828642772855 0.13 20 -53.3248531914 +0.135086591867 0.00931939576234 0.13 20 -53.5033718202 +0.135086591867 0.0104811313415 0.13 20 -53.7059069753 +0.135086591867 0.0117876863479 0.13 20 -53.9359304987 +0.135086591867 0.0132571136559 0.13 20 -54.1974783458 +0.135086591867 0.0149097165718 0.13 20 -54.4952576991 +0.135086591867 0.0167683293681 0.13 20 -54.8347780376 +0.135086591867 0.0188586327877 0.13 20 -55.2225123282 +0.135086591867 0.0212095088792 0.13 20 -55.6660962706 +0.135086591867 0.0238534400643 0.13 20 -56.1745758545 +0.135086591867 0.0268269579528 0.13 20 -56.7587165576 +0.135086591867 0.0301711481053 0.13 20 -57.4313915801 +0.135086591867 0.033932217719 0.13 20 -58.2080719428 +0.135086591867 0.0381621340795 0.13 20 -59.1074485402 +0.135086591867 0.0429193426013 0.13 20 -60.1522260392 +0.135086591867 0.0482695743768 0.13 20 -61.3701417719 +0.135086591867 0.0542867543932 0.13 20 -62.7952808372 +0.135086591867 0.0610540229659 0.13 20 -64.4697833785 +0.135086591867 0.0686648845004 0.13 20 -66.4460741283 +0.135086591867 0.0772244994584 0.13 20 -68.7897916875 +0.135086591867 0.0868511373751 0.13 20 -71.583661251 +0.135086591867 0.0976778110089 0.13 20 -74.9326478867 +0.135086591867 0.109854114199 0.13 20 -78.9708603706 +0.135086591867 0.123548288826 0.13 20 -83.8708667019 +0.135086591867 0.138949549437 0.13 20 -89.8563607619 +0.135086591867 0.156270697655 0.13 20 -97.2195310363 +0.135086591867 0.175751062485 0.13 20 -106.345101622 +0.135086591867 0.19765980717 0.13 20 -117.743968322 +0.135086591867 0.222299648253 0.13 20 -132.100856655 +0.135086591867 0.250011038262 0.13 20 -150.342878458 +0.135086591867 0.281176869797 0.13 20 -173.740003748 +0.135086591867 0.316227766017 0.13 20 -204.055767837 +0.154808897723 0.001 0.13 20 -52.1071976297 +0.154808897723 0.00112465782212 0.13 20 -52.1274626047 +0.154808897723 0.00126485521686 0.13 20 -52.1502785467 +0.154808897723 0.00142252931349 0.13 20 -52.1759700359 +0.154808897723 0.00159985871961 0.13 20 -52.2049038655 +0.154808897723 0.00179929362329 0.13 20 -52.2374947711 +0.154808897723 0.00202358964773 0.13 20 -52.2742119999 +0.154808897723 0.00227584592607 0.13 20 -52.3155868575 +0.154808897723 0.0025595479227 0.13 20 -52.3622213974 +0.154808897723 0.00287861559235 0.13 20 -52.414798451 +0.154808897723 0.00323745754282 0.13 20 -52.474093234 +0.154808897723 0.00364103194931 0.13 20 -52.5409868158 +0.154808897723 0.00409491506238 0.13 20 -52.6164817963 +0.154808897723 0.00460537825582 0.13 20 -52.7017206131 +0.154808897723 0.00517947467923 0.13 20 -52.79800699 +0.154808897723 0.00582513671247 0.13 20 -52.9068311596 +0.154808897723 0.0065512855686 0.13 20 -53.0298996343 +0.154808897723 0.00736795455966 0.13 20 -53.1691704883 +0.154808897723 0.00828642772855 0.13 20 -53.3268953421 +0.154808897723 0.00931939576234 0.13 20 -53.5056695405 +0.154808897723 0.0104811313415 0.13 20 -53.7084923912 +0.154808897723 0.0117876863479 0.13 20 -53.938839813 +0.154808897723 0.0132571136559 0.13 20 -54.2007523655 +0.154808897723 0.0149097165718 0.13 20 -54.4989424341 +0.154808897723 0.0167683293681 0.13 20 -54.8389253813 +0.154808897723 0.0188586327877 0.13 20 -55.2271808315 +0.154808897723 0.0212095088792 0.13 20 -55.6713520232 +0.154808897723 0.0238534400643 0.13 20 -56.1804934911 +0.154808897723 0.0268269579528 0.13 20 -56.765380408 +0.154808897723 0.0301711481053 0.13 20 -57.4388969872 +0.154808897723 0.033932217719 0.13 20 -58.2165267753 +0.154808897723 0.0381621340795 0.13 20 -59.1169749354 +0.154808897723 0.0429193426013 0.13 20 -60.162962415 +0.154808897723 0.0482695743768 0.13 20 -61.3822451583 +0.154808897723 0.0542867543932 0.13 20 -62.8089295891 +0.154808897723 0.0610540229659 0.13 20 -64.4851803435 +0.154808897723 0.0686648845004 0.13 20 -66.4634503661 +0.154808897723 0.0772244994584 0.13 20 -68.8094108576 +0.154808897723 0.0868511373751 0.13 20 -71.6058248213 +0.154808897723 0.0976778110089 0.13 20 -74.9577013562 +0.154808897723 0.109854114199 0.13 20 -78.9992007578 +0.154808897723 0.123548288826 0.13 20 -83.9029516297 +0.154808897723 0.138949549437 0.13 20 -89.8927195756 +0.154808897723 0.156270697655 0.13 20 -97.2607785463 +0.154808897723 0.175751062485 0.13 20 -106.391955276 +0.154808897723 0.19765980717 0.13 20 -117.79726993 +0.154808897723 0.222299648253 0.13 20 -132.161600268 +0.154808897723 0.250011038262 0.13 20 -150.412246732 +0.154808897723 0.281176869797 0.13 20 -173.81941634 +0.154808897723 0.316227766017 0.13 20 -204.146947401 +0.177410611097 0.001 0.13 20 -52.1074662313 +0.177410611097 0.00112465782212 0.13 20 -52.1277647054 +0.177410611097 0.00126485521686 0.13 20 -52.1506183266 +0.177410611097 0.00142252931349 0.13 20 -52.1763521972 +0.177410611097 0.00159985871961 0.13 20 -52.2053336982 +0.177410611097 0.00179929362329 0.13 20 -52.2379782263 +0.177410611097 0.00202358964773 0.13 20 -52.2747557728 +0.177410611097 0.00227584592607 0.13 20 -52.3161984807 +0.177410611097 0.0025595479227 0.13 20 -52.3629093462 +0.177410611097 0.00287861559235 0.13 20 -52.4155722617 +0.177410611097 0.00323745754282 0.13 20 -52.4749636375 +0.177410611097 0.00364103194931 0.13 20 -52.541965888 +0.177410611097 0.00409491506238 0.13 20 -52.6175831277 +0.177410611097 0.00460537825582 0.13 20 -52.7029595001 +0.177410611097 0.00517947467923 0.13 20 -52.7994006506 +0.177410611097 0.00582513671247 0.13 20 -52.9083989771 +0.177410611097 0.0065512855686 0.13 20 -53.0316634321 +0.177410611097 0.00736795455966 0.13 20 -53.1711548404 +0.177410611097 0.00828642772855 0.13 20 -53.3291279241 +0.177410611097 0.00931939576234 0.13 20 -53.5081815268 +0.177410611097 0.0104811313415 0.13 20 -53.7113189037 +0.177410611097 0.0117876863479 0.13 20 -53.94202043 +0.177410611097 0.0132571136559 0.13 20 -54.2043316983 +0.177410611097 0.0149097165718 0.13 20 -54.5029707811 +0.177410611097 0.0167683293681 0.13 20 -54.8434594712 +0.177410611097 0.0188586327877 0.13 20 -55.2322846678 +0.177410611097 0.0212095088792 0.13 20 -55.6770978467 +0.177410611097 0.0238534400643 0.13 20 -56.1869628773 +0.177410611097 0.0268269579528 0.13 20 -56.7726655209 +0.177410611097 0.0301711481053 0.13 20 -57.4471020141 +0.177410611097 0.033932217719 0.13 20 -58.2257695734 +0.177410611097 0.0381621340795 0.13 20 -59.1273889248 +0.177410611097 0.0429193426013 0.13 20 -60.1746987616 +0.177410611097 0.0482695743768 0.13 20 -61.3954752984 +0.177410611097 0.0542867543932 0.13 20 -62.8238481583 +0.177410611097 0.0610540229659 0.13 20 -64.5020085892 +0.177410611097 0.0686648845004 0.13 20 -66.4824401375 +0.177410611097 0.0772244994584 0.13 20 -68.8308492946 +0.177410611097 0.0868511373751 0.13 20 -71.6300398912 +0.177410611097 0.0976778110089 0.13 20 -74.9850684295 +0.177410611097 0.109854114199 0.13 20 -79.0301504661 +0.177410611097 0.123548288826 0.13 20 -83.9379793205 +0.177410611097 0.138949549437 0.13 20 -89.9323967745 +0.177410611097 0.156270697655 0.13 20 -97.3057669709 +0.177410611097 0.175751062485 0.13 20 -106.443024129 +0.177410611097 0.19765980717 0.13 20 -117.855317467 +0.177410611097 0.222299648253 0.13 20 -132.227681019 +0.177410611097 0.250011038262 0.13 20 -150.487606351 +0.177410611097 0.281176869797 0.13 20 -173.905536971 +0.177410611097 0.316227766017 0.13 20 -204.245607978 +0.203312118313 0.001 0.13 20 -52.1077597269 +0.203312118313 0.00112465782212 0.13 20 -52.1280948055 +0.203312118313 0.00126485521686 0.13 20 -52.150989599 +0.203312118313 0.00142252931349 0.13 20 -52.1767697806 +0.203312118313 0.00159985871961 0.13 20 -52.205803373 +0.203312118313 0.00179929362329 0.13 20 -52.2385064959 +0.203312118313 0.00202358964773 0.13 20 -52.2753499538 +0.203312118313 0.00227584592607 0.13 20 -52.3168668048 +0.203312118313 0.0025595479227 0.13 20 -52.3636610755 +0.203312118313 0.00287861559235 0.13 20 -52.4164178182 +0.203312118313 0.00323745754282 0.13 20 -52.4759147488 +0.203312118313 0.00364103194931 0.13 20 -52.5430357519 +0.203312118313 0.00409491506238 0.13 20 -52.618786598 +0.203312118313 0.00460537825582 0.13 20 -52.7043132954 +0.203312118313 0.00517947467923 0.13 20 -52.8009235905 +0.203312118313 0.00582513671247 0.13 20 -52.9101122486 +0.203312118313 0.0065512855686 0.13 20 -53.0335908904 +0.203312118313 0.00736795455966 0.13 20 -53.1733233488 +0.203312118313 0.00828642772855 0.13 20 -53.331567738 +0.203312118313 0.00931939576234 0.13 20 -53.5109267282 +0.203312118313 0.0104811313415 0.13 20 -53.7144078931 +0.203312118313 0.0117876863479 0.13 20 -53.945496483 +0.203312118313 0.0132571136559 0.13 20 -54.2082435977 +0.203312118313 0.0149097165718 0.13 20 -54.5073735327 +0.203312118313 0.0167683293681 0.13 20 -54.8484151184 +0.203312118313 0.0188586327877 0.13 20 -55.2378632173 +0.203312118313 0.0212095088792 0.13 20 -55.683378323 +0.203312118313 0.0238534400643 0.13 20 -56.1940345256 +0.203312118313 0.0268269579528 0.13 20 -56.7806291812 +0.203312118313 0.0301711481053 0.13 20 -57.4560716949 +0.203312118313 0.033932217719 0.13 20 -58.2358742561 +0.203312118313 0.0381621340795 0.13 20 -59.1387746384 +0.203312118313 0.0429193426013 0.13 20 -60.1875309747 +0.203312118313 0.0482695743768 0.13 20 -61.4099416837 +0.203312118313 0.0542867543932 0.13 20 -62.840161799 +0.203312118313 0.0610540229659 0.13 20 -64.5204117092 +0.203312118313 0.0686648845004 0.13 20 -66.5032084591 +0.203312118313 0.0772244994584 0.13 20 -68.8542971497 +0.203312118313 0.0868511373751 0.13 20 -71.6565262446 +0.203312118313 0.0976778110089 0.13 20 -75.0150040126 +0.203312118313 0.109854114199 0.13 20 -79.0640062732 +0.203312118313 0.123548288826 0.13 20 -83.9762967893 +0.203312118313 0.138949549437 0.13 20 -89.9758000679 +0.203312118313 0.156270697655 0.13 20 -97.3549779018 +0.203312118313 0.175751062485 0.13 20 -106.498880448 +0.203312118313 0.19765980717 0.13 20 -117.918795472 +0.203312118313 0.222299648253 0.13 20 -132.299923806 +0.203312118313 0.250011038262 0.13 20 -150.569959528 +0.203312118313 0.281176869797 0.13 20 -173.999594447 +0.203312118313 0.316227766017 0.13 20 -204.353271675 +0.232995181052 0.001 0.13 20 -52.1080793105 +0.232995181052 0.00112465782212 0.13 20 -52.1284542486 +0.232995181052 0.00126485521686 0.13 20 -52.1513938759 +0.232995181052 0.00142252931349 0.13 20 -52.1772244871 +0.232995181052 0.00159985871961 0.13 20 -52.2063148046 +0.232995181052 0.00179929362329 0.13 20 -52.2390817349 +0.232995181052 0.00202358964773 0.13 20 -52.2759969684 +0.232995181052 0.00227584592607 0.13 20 -52.3175945604 +0.232995181052 0.0025595479227 0.13 20 -52.3644796598 +0.232995181052 0.00287861559235 0.13 20 -52.4173385824 +0.232995181052 0.00323745754282 0.13 20 -52.4769504667 +0.232995181052 0.00364103194931 0.13 20 -52.5442007994 +0.232995181052 0.00409491506238 0.13 20 -52.6200971551 +0.232995181052 0.00460537825582 0.13 20 -52.7057875746 +0.232995181052 0.00517947467923 0.13 20 -52.8025820942 +0.232995181052 0.00582513671247 0.13 20 -52.9119780597 +0.232995181052 0.0065512855686 0.13 20 -53.0356900005 +0.232995181052 0.00736795455966 0.13 20 -53.1756850292 +0.232995181052 0.00828642772855 0.13 20 -53.3342249593 +0.232995181052 0.00931939576234 0.13 20 -53.5139166345 +0.232995181052 0.0104811313415 0.13 20 -53.7177723393 +0.232995181052 0.0117876863479 0.13 20 -53.9492826439 +0.232995181052 0.0132571136559 0.13 20 -54.2125046579 +0.232995181052 0.0149097165718 0.13 20 -54.512169471 +0.232995181052 0.0167683293681 0.13 20 -54.8538135981 +0.232995181052 0.0188586327877 0.13 20 -55.2439406005 +0.232995181052 0.0212095088792 0.13 20 -55.6902208255 +0.232995181052 0.0238534400643 0.13 20 -56.2017395359 +0.232995181052 0.0268269579528 0.13 20 -56.7893067674 +0.232995181052 0.0301711481053 0.13 20 -57.4658463318 +0.232995181052 0.033932217719 0.13 20 -58.2468868068 +0.232995181052 0.0381621340795 0.13 20 -59.1511846349 +0.232995181052 0.0429193426013 0.13 20 -60.2015192477 +0.232995181052 0.0482695743768 0.13 20 -61.4257134049 +0.232995181052 0.0542867543932 0.13 20 -62.8579500108 +0.232995181052 0.0610540229659 0.13 20 -64.5404814338 +0.232995181052 0.0686648845004 0.13 20 -66.5258615005 +0.232995181052 0.0772244994584 0.13 20 -68.8798777278 +0.232995181052 0.0868511373751 0.13 20 -71.6854276344 +0.232995181052 0.0976778110089 0.13 20 -75.0476764074 +0.232995181052 0.109854114199 0.13 20 -79.1009661454 +0.232995181052 0.123548288826 0.13 20 -84.0181380992 +0.232995181052 0.138949549437 0.13 20 -90.0232077704 +0.232995181052 0.156270697655 0.13 20 -97.4087443345 +0.232995181052 0.175751062485 0.13 20 -106.559925367 +0.232995181052 0.19765980717 0.13 20 -117.988190758 +0.232995181052 0.222299648253 0.13 20 -132.378924207 +0.232995181052 0.250011038262 0.13 20 -150.660041342 +0.232995181052 0.281176869797 0.13 20 -174.102504769 +0.232995181052 0.316227766017 0.13 20 -204.471092032 +0.267011896997 0.001 0.13 20 -52.108425352 +0.267011896997 0.00112465782212 0.13 20 -52.1288434511 +0.267011896997 0.00126485521686 0.13 20 -52.1518316263 +0.267011896997 0.00142252931349 0.13 20 -52.1777168453 +0.267011896997 0.00159985871961 0.13 20 -52.2068685882 +0.267011896997 0.00179929362329 0.13 20 -52.2397046142 +0.267011896997 0.00202358964773 0.13 20 -52.2766975731 +0.267011896997 0.00227584592607 0.13 20 -52.3183826005 +0.267011896997 0.0025595479227 0.13 20 -52.3653660611 +0.267011896997 0.00287861559235 0.13 20 -52.4183356396 +0.267011896997 0.00323745754282 0.13 20 -52.4780720164 +0.267011896997 0.00364103194931 0.13 20 -52.5454624138 +0.267011896997 0.00409491506238 0.13 20 -52.621516362 +0.267011896997 0.00460537825582 0.13 20 -52.7073841046 +0.267011896997 0.00517947467923 0.13 20 -52.8043781604 +0.267011896997 0.00582513671247 0.13 20 -52.9139986725 +0.267011896997 0.0065512855686 0.13 20 -53.037963325 +0.267011896997 0.00736795455966 0.13 20 -53.1782427872 +0.267011896997 0.00828642772855 0.13 20 -53.3371028853 +0.267011896997 0.00931939576234 0.13 20 -53.5171549915 +0.267011896997 0.0104811313415 0.13 20 -53.7214165031 +0.267011896997 0.0117876863479 0.13 20 -53.953383765 +0.267011896997 0.0132571136559 0.13 20 -54.2171204135 +0.267011896997 0.0149097165718 0.13 20 -54.5173649185 +0.267011896997 0.0167683293681 0.13 20 -54.8596621461 +0.267011896997 0.0188586327877 0.13 20 -55.2505251145 +0.267011896997 0.0212095088792 0.13 20 -55.6976348893 +0.267011896997 0.0238534400643 0.13 20 -56.2100888914 +0.267011896997 0.0268269579528 0.13 20 -56.7987109637 +0.267011896997 0.0301711481053 0.13 20 -57.4764406148 +0.267011896997 0.033932217719 0.13 20 -58.2588242914 +0.267011896997 0.0381621340795 0.13 20 -59.1646388062 +0.267011896997 0.0429193426013 0.13 20 -60.2166868504 +0.267011896997 0.0482695743768 0.13 20 -61.4428177892 +0.267011896997 0.0542867543932 0.13 20 -62.8772450201 +0.267011896997 0.0610540229659 0.13 20 -64.5622559376 +0.267011896997 0.0686648845004 0.13 20 -66.5504446986 +0.267011896997 0.0772244994584 0.13 20 -68.9076453838 +0.267011896997 0.0868511373751 0.13 20 -71.716809434 +0.267011896997 0.0976778110089 0.13 20 -75.0831646854 +0.267011896997 0.109854114199 0.13 20 -79.1411262934 +0.267011896997 0.123548288826 0.13 20 -84.0636210476 +0.267011896997 0.138949549437 0.13 20 -90.0747650534 +0.267011896997 0.156270697655 0.13 20 -97.4672463986 +0.267011896997 0.175751062485 0.13 20 -106.626383989 +0.267011896997 0.19765980717 0.13 20 -118.063786723 +0.267011896997 0.222299648253 0.13 20 -132.465041803 +0.267011896997 0.250011038262 0.13 20 -150.758311784 +0.267011896997 0.281176869797 0.13 20 -174.214861526 +0.267011896997 0.316227766017 0.13 20 -204.599842251 +0.305994968721 0.001 0.13 20 -52.1087973663 +0.305994968721 0.00112465782212 0.13 20 -52.129261868 +0.305994968721 0.00126485521686 0.13 20 -52.1523022376 +0.305994968721 0.00142252931349 0.13 20 -52.178246167 +0.305994968721 0.00159985871961 0.13 20 -52.2074639509 +0.305994968721 0.00179929362329 0.13 20 -52.2403742654 +0.305994968721 0.00202358964773 0.13 20 -52.2774507926 +0.305994968721 0.00227584592607 0.13 20 -52.3192298298 +0.305994968721 0.0025595479227 0.13 20 -52.3663190499 +0.305994968721 0.00287861559235 0.13 20 -52.4194076102 +0.305994968721 0.00323745754282 0.13 20 -52.4792778496 +0.305994968721 0.00364103194931 0.13 20 -52.5468188586 +0.305994968721 0.00409491506238 0.13 20 -52.6230422714 +0.305994968721 0.00460537825582 0.13 20 -52.7091007028 +0.305994968721 0.00517947467923 0.13 20 -52.8063093433 +0.305994968721 0.00582513671247 0.13 20 -52.9161713485 +0.305994968721 0.0065512855686 0.13 20 -53.0404077986 +0.305994968721 0.00736795455966 0.13 20 -53.180993194 +0.305994968721 0.00828642772855 0.13 20 -53.3401976839 +0.305994968721 0.00931939576234 0.13 20 -53.5206375199 +0.305994968721 0.0104811313415 0.13 20 -53.7253356101 +0.305994968721 0.0117876863479 0.13 20 -53.9577945261 +0.305994968721 0.0132571136559 0.13 20 -54.2220849435 +0.305994968721 0.0149097165718 0.13 20 -54.5229532956 +0.305994968721 0.0167683293681 0.13 20 -54.8659534639 +0.305994968721 0.0188586327877 0.13 20 -55.2576086802 +0.305994968721 0.0212095088792 0.13 20 -55.7056115924 +0.305994968721 0.0238534400643 0.13 20 -56.2190727684 +0.305994968721 0.0268269579528 0.13 20 -56.8088309906 +0.305994968721 0.0301711481053 0.13 20 -57.4878427651 +0.305994968721 0.033932217719 0.13 20 -58.2716739039 +0.305994968721 0.0381621340795 0.13 20 -59.1791233169 +0.305994968721 0.0429193426013 0.13 20 -60.2330189518 +0.305994968721 0.0482695743768 0.13 20 -61.4612390966 +0.305994968721 0.0542867543932 0.13 20 -62.8980303388 +0.305994968721 0.0610540229659 0.13 20 -64.5857182481 +0.305994968721 0.0686648845004 0.13 20 -66.5769410042 +0.305994968721 0.0772244994584 0.13 20 -68.9375835973 +0.305994968721 0.0868511373751 0.13 20 -71.7506565276 +0.305994968721 0.0976778110089 0.13 20 -75.1214563837 +0.305994968721 0.109854114199 0.13 20 -79.1844786645 +0.305994968721 0.123548288826 0.13 20 -84.1127444483 +0.305994968721 0.138949549437 0.13 20 -90.1304810152 +0.305994968721 0.156270697655 0.13 20 -97.5305082201 +0.305994968721 0.175751062485 0.13 20 -106.698302047 +0.305994968721 0.19765980717 0.13 20 -118.145659851 +0.305994968721 0.222299648253 0.13 20 -132.558396563 +0.305994968721 0.250011038262 0.13 20 -150.864952144 +0.305994968721 0.281176869797 0.13 20 -174.336932454 +0.305994968721 0.316227766017 0.13 20 -204.739912249 +0.350669471793 0.001 0.13 20 -52.1091939568 +0.350669471793 0.00112465782212 0.13 20 -52.1297079289 +0.350669471793 0.00126485521686 0.13 20 -52.1528039443 +0.350669471793 0.00142252931349 0.13 20 -52.178810467 +0.350669471793 0.00159985871961 0.13 20 -52.2080986605 +0.350669471793 0.00179929362329 0.13 20 -52.2410881791 +0.350669471793 0.00202358964773 0.13 20 -52.2782538057 +0.350669471793 0.00227584592607 0.13 20 -52.320133077 +0.350669471793 0.0025595479227 0.13 20 -52.3673350611 +0.350669471793 0.00287861559235 0.13 20 -52.4205504867 +0.350669471793 0.00323745754282 0.13 20 -52.4805634622 +0.350669471793 0.00364103194931 0.13 20 -52.5482650713 +0.350669471793 0.00409491506238 0.13 20 -52.6246691943 +0.350669471793 0.00460537825582 0.13 20 -52.7109309763 +0.350669471793 0.00517947467923 0.13 20 -52.8083684605 +0.350669471793 0.00582513671247 0.13 20 -52.9184880185 +0.350669471793 0.0065512855686 0.13 20 -53.0430143578 +0.350669471793 0.00736795455966 0.13 20 -53.183926071 +0.350669471793 0.00828642772855 0.13 20 -53.3434979256 +0.350669471793 0.00931939576234 0.13 20 -53.5243513887 +0.350669471793 0.0104811313415 0.13 20 -53.7295152595 +0.350669471793 0.0117876863479 0.13 20 -53.9624987686 +0.350669471793 0.0132571136559 0.13 20 -54.2273801226 +0.350669471793 0.0149097165718 0.13 20 -54.5289142786 +0.350669471793 0.0167683293681 0.13 20 -54.8726647715 +0.350669471793 0.0188586327877 0.13 20 -55.2651657766 +0.350669471793 0.0212095088792 0.13 20 -55.7141223587 +0.350669471793 0.0238534400643 0.13 20 -56.2286591897 +0.350669471793 0.0268269579528 0.13 20 -56.819631091 +0.350669471793 0.0301711481053 0.13 20 -57.5000128322 +0.350669471793 0.033932217719 0.13 20 -58.285391053 +0.350669471793 0.0381621340795 0.13 20 -59.1945884528 +0.350669471793 0.0429193426013 0.13 20 -60.250460202 +0.350669471793 0.0482695743768 0.13 20 -61.4809158017 +0.350669471793 0.0542867543932 0.13 20 -62.9202377085 +0.350669471793 0.0610540229659 0.13 20 -64.6107928129 +0.350669471793 0.0686648845004 0.13 20 -66.6052670258 +0.350669471793 0.0772244994584 0.13 20 -68.9696006404 +0.350669471793 0.0868511373751 0.13 20 -71.7868684468 +0.350669471793 0.0976778110089 0.13 20 -75.162442047 +0.350669471793 0.109854114199 0.13 20 -79.2309048223 +0.350669471793 0.123548288826 0.13 20 -84.1653812755 +0.350669471793 0.138949549437 0.13 20 -90.1902210093 +0.350669471793 0.156270697655 0.13 20 -97.598389354 +0.350669471793 0.175751062485 0.13 20 -106.775536368 +0.350669471793 0.19765980717 0.13 20 -118.233669131 +0.350669471793 0.222299648253 0.13 20 -132.658857187 +0.350669471793 0.250011038262 0.13 20 -150.979852274 +0.350669471793 0.281176869797 0.13 20 -174.468645753 +0.350669471793 0.316227766017 0.13 20 -204.891294339 +0.401866341011 0.001 0.13 20 -52.1096127371 +0.401866341011 0.00112465782212 0.13 20 -52.13017895 +0.401866341011 0.00126485521686 0.13 20 -52.1533337282 +0.401866341011 0.00142252931349 0.13 20 -52.1794063512 +0.401866341011 0.00159985871961 0.13 20 -52.2087689005 +0.401866341011 0.00179929362329 0.13 20 -52.2418420635 +0.401866341011 0.00202358964773 0.13 20 -52.2791017863 +0.401866341011 0.00227584592607 0.13 20 -52.321086915 +0.401866341011 0.0025595479227 0.13 20 -52.3684079922 +0.401866341011 0.00287861559235 0.13 20 -52.4217574073 +0.401866341011 0.00323745754282 0.13 20 -52.4819211387 +0.401866341011 0.00364103194931 0.13 20 -52.5497923772 +0.401866341011 0.00409491506238 0.13 20 -52.6263873771 +0.401866341011 0.00460537825582 0.13 20 -52.7128639594 +0.401866341011 0.00517947467923 0.13 20 -52.8105431838 +0.401866341011 0.00582513671247 0.13 20 -52.9209348234 +0.401866341011 0.0065512855686 0.13 20 -53.045767423 +0.401866341011 0.00736795455966 0.13 20 -53.1870239054 +0.401866341011 0.00828642772855 0.13 20 -53.3469839267 +0.401866341011 0.00931939576234 0.13 20 -53.5282744752 +0.401866341011 0.0104811313415 0.13 20 -53.7339305898 +0.401866341011 0.0117876863479 0.13 20 -53.9674685559 +0.401866341011 0.0132571136559 0.13 20 -54.2329745628 +0.401866341011 0.0149097165718 0.13 20 -54.5352126056 +0.401866341011 0.0167683293681 0.13 20 -54.8797564617 +0.401866341011 0.0188586327877 0.13 20 -55.2731519232 +0.401866341011 0.0212095088792 0.13 20 -55.7231172448 +0.401866341011 0.0238534400643 0.13 20 -56.2387920909 +0.401866341011 0.0268269579528 0.13 20 -56.8310483461 +0.401866341011 0.0301711481053 0.13 20 -57.5128802272 +0.401866341011 0.033932217719 0.13 20 -58.2998965726 +0.401866341011 0.0381621340795 0.13 20 -59.2109454662 +0.401866341011 0.0429193426013 0.13 20 -60.2689111609 +0.401866341011 0.0482695743768 0.13 20 -61.5017365492 +0.401866341011 0.0542867543932 0.13 20 -62.9437425171 +0.401866341011 0.0610540229659 0.13 20 -64.6373402997 +0.401866341011 0.0686648845004 0.13 20 -66.6352671263 +0.401866341011 0.0772244994584 0.13 20 -69.0035228708 +0.401866341011 0.0868511373751 0.13 20 -71.8252517425 +0.401866341011 0.0976778110089 0.13 20 -75.205906544 +0.401866341011 0.109854114199 0.13 20 -79.2801660516 +0.401866341011 0.123548288826 0.13 20 -84.2212673765 +0.401866341011 0.138949549437 0.13 20 -90.2536937593 +0.401866341011 0.156270697655 0.13 20 -97.670570062 +0.401866341011 0.175751062485 0.13 20 -106.857738039 +0.401866341011 0.19765980717 0.13 20 -118.327436809 +0.401866341011 0.222299648253 0.13 20 -132.7660191 +0.401866341011 0.250011038262 0.13 20 -151.102585467 +0.401866341011 0.281176869797 0.13 20 -174.609561467 +0.401866341011 0.316227766017 0.13 20 -205.053550795 +0.460537825582 0.001 0.13 20 -52.1100502562 +0.460537825582 0.00112465782212 0.13 20 -52.1306710503 +0.460537825582 0.00126485521686 0.13 20 -52.1538872246 +0.460537825582 0.00142252931349 0.13 20 -52.1800289109 +0.460537825582 0.00159985871961 0.13 20 -52.2094691501 +0.460537825582 0.00179929362329 0.13 20 -52.2426297098 +0.460537825582 0.00202358964773 0.13 20 -52.2799877518 +0.460537825582 0.00227584592607 0.13 20 -52.3220834912 +0.460537825582 0.0025595479227 0.13 20 -52.3695290122 +0.460537825582 0.00287861559235 0.13 20 -52.4230184403 +0.460537825582 0.00323745754282 0.13 20 -52.4833397099 +0.460537825582 0.00364103194931 0.13 20 -52.5513882153 +0.460537825582 0.00409491506238 0.13 20 -52.628182694 +0.460537825582 0.00460537825582 0.13 20 -52.7148837665 +0.460537825582 0.00517947467923 0.13 20 -52.8128156485 +0.460537825582 0.00582513671247 0.13 20 -52.9234916732 +0.460537825582 0.0065512855686 0.13 20 -53.048644402 +0.460537825582 0.00736795455966 0.13 20 -53.1902612916 +0.460537825582 0.00828642772855 0.13 20 -53.3506271179 +0.460537825582 0.00931939576234 0.13 20 -53.5323746534 +0.460537825582 0.0104811313415 0.13 20 -53.7385454759 +0.460537825582 0.0117876863479 0.13 20 -53.9726632674 +0.460537825582 0.0132571136559 0.13 20 -54.2388225891 +0.460537825582 0.0149097165718 0.13 20 -54.5417969206 +0.460537825582 0.0167683293681 0.13 20 -54.8871707923 +0.460537825582 0.0188586327877 0.13 20 -55.2815022005 +0.460537825582 0.0212095088792 0.13 20 -55.7325232653 +0.460537825582 0.0238534400643 0.13 20 -56.2493894233 +0.460537825582 0.0268269579528 0.13 20 -56.8429905248 +0.460537825582 0.0301711481053 0.13 20 -57.5263412812 +0.460537825582 0.033932217719 0.13 20 -58.3150739494 +0.460537825582 0.0381621340795 0.13 20 -59.2280634229 +0.460537825582 0.0429193426013 0.13 20 -60.2882247091 +0.460537825582 0.0482695743768 0.13 20 -61.5235360618 +0.460537825582 0.0542867543932 0.13 20 -62.968359127 +0.460537825582 0.0610540229659 0.13 20 -64.6651522549 +0.460537825582 0.0686648845004 0.13 20 -66.6667073047 +0.460537825582 0.0772244994584 0.13 20 -69.0390877106 +0.460537825582 0.0868511373751 0.13 20 -71.8655119121 +0.460537825582 0.0976778110089 0.13 20 -75.2515197663 +0.460537825582 0.109854114199 0.13 20 -79.3318926167 +0.460537825582 0.123548288826 0.13 20 -84.2799890377 +0.460537825582 0.138949549437 0.13 20 -90.3204369276 +0.460537825582 0.156270697655 0.13 20 -97.7465345181 +0.460537825582 0.175751062485 0.13 20 -106.944332807 +0.460537825582 0.19765980717 0.13 20 -118.426325437 +0.460537825582 0.222299648253 0.13 20 -132.879177494 +0.460537825582 0.250011038262 0.13 20 -151.232376688 +0.460537825582 0.281176869797 0.13 20 -174.758833923 +0.460537825582 0.316227766017 0.13 20 -205.225769295 +0.527775200726 0.001 0.13 20 -52.1105019614 +0.527775200726 0.00112465782212 0.13 20 -52.1311791095 +0.527775200726 0.00126485521686 0.13 20 -52.1544586746 +0.527775200726 0.00142252931349 0.13 20 -52.1806716692 +0.527775200726 0.00159985871961 0.13 20 -52.210192125 +0.527775200726 0.00179929362329 0.13 20 -52.2434429253 +0.527775200726 0.00202358964773 0.13 20 -52.2809024878 +0.527775200726 0.00227584592607 0.13 20 -52.3231124419 +0.527775200726 0.0025595479227 0.13 20 -52.3706864647 +0.527775200726 0.00287861559235 0.13 20 -52.4243204757 +0.527775200726 0.00323745754282 0.13 20 -52.4848044304 +0.527775200726 0.00364103194931 0.13 20 -52.5530360006 +0.527775200726 0.00409491506238 0.13 20 -52.6300364911 +0.527775200726 0.00460537825582 0.13 20 -52.7169694159 +0.527775200726 0.00517947467923 0.13 20 -52.8151622549 +0.527775200726 0.00582513671247 0.13 20 -52.9261320231 +0.527775200726 0.0065512855686 0.13 20 -53.0516154369 +0.527775200726 0.00736795455966 0.13 20 -53.1936046444 +0.527775200726 0.00828642772855 0.13 20 -53.3543897205 +0.527775200726 0.00931939576234 0.13 20 -53.5366094269 +0.527775200726 0.0104811313415 0.13 20 -53.7433121135 +0.527775200726 0.0117876863479 0.13 20 -53.9780291259 +0.527775200726 0.0132571136559 0.13 20 -54.2448637042 +0.527775200726 0.0149097165718 0.13 20 -54.5485991635 +0.527775200726 0.0167683293681 0.13 20 -54.8948311929 +0.527775200726 0.0188586327877 0.13 20 -55.29013046 +0.527775200726 0.0212095088792 0.13 20 -55.7422434912 +0.527775200726 0.0238534400643 0.13 20 -56.2603421236 +0.527775200726 0.0268269579528 0.13 20 -56.8553349039 +0.527775200726 0.0301711481053 0.13 20 -57.5402578923 +0.527775200726 0.033932217719 0.13 20 -58.3307677663 +0.527775200726 0.0381621340795 0.13 20 -59.2457674085 +0.527775200726 0.0429193426013 0.13 20 -60.3082039763 +0.527775200726 0.0482695743768 0.13 20 -61.5460927415 +0.527775200726 0.0542867543932 0.13 20 -62.993838089 +0.527775200726 0.0610540229659 0.13 20 -64.6939478587 +0.527775200726 0.0686648845004 0.13 20 -66.6992714054 +0.527775200726 0.0772244994584 0.13 20 -69.0759392027 +0.527775200726 0.0868511373751 0.13 20 -71.9072481718 +0.527775200726 0.0976778110089 0.13 20 -75.2988304543 +0.527775200726 0.109854114199 0.13 20 -79.3855764422 +0.527775200726 0.123548288826 0.13 20 -84.3409742693 +0.527775200726 0.138949549437 0.13 20 -90.3898066915 +0.527775200726 0.156270697655 0.13 20 -97.8255582809 +0.527775200726 0.175751062485 0.13 20 -107.034505941 +0.527775200726 0.19765980717 0.13 20 -118.529419494 +0.527775200726 0.222299648253 0.13 20 -132.997304861 +0.527775200726 0.250011038262 0.13 20 -151.36807492 +0.527775200726 0.281176869797 0.13 20 -174.915177444 +0.527775200726 0.316227766017 0.13 20 -205.406520063 +0.604829065124 0.001 0.13 20 -52.1109622298 +0.604829065124 0.00112465782212 0.13 20 -52.1316968031 +0.604829065124 0.00126485521686 0.13 20 -52.1550409652 +0.604829065124 0.00142252931349 0.13 20 -52.1813266256 +0.604829065124 0.00159985871961 0.13 20 -52.2109288267 +0.604829065124 0.00179929362329 0.13 20 -52.2442715888 +0.604829065124 0.00202358964773 0.13 20 -52.2818346103 +0.604829065124 0.00227584592607 0.13 20 -52.3241609628 +0.604829065124 0.0025595479227 0.13 20 -52.3718659474 +0.604829065124 0.00287861559235 0.13 20 -52.4256473134 +0.604829065124 0.00323745754282 0.13 20 -52.4862970779 +0.604829065124 0.00364103194931 0.13 20 -52.5547152359 +0.604829065124 0.00409491506238 0.13 20 -52.6319257111 +0.604829065124 0.00460537825582 0.13 20 -52.7190949707 +0.604829065124 0.00517947467923 0.13 20 -52.8175538255 +0.604829065124 0.00582513671247 0.13 20 -52.9288230488 +0.604829065124 0.0065512855686 0.13 20 -53.0546435999 +0.604829065124 0.00736795455966 0.13 20 -53.1970124178 +0.604829065124 0.00828642772855 0.13 20 -53.3582249912 +0.604829065124 0.00931939576234 0.13 20 -53.5409262015 +0.604829065124 0.0104811313415 0.13 20 -53.7481713222 +0.604829065124 0.0117876863479 0.13 20 -53.9834995364 +0.604829065124 0.0132571136559 0.13 20 -54.2510229634 +0.604829065124 0.0149097165718 0.13 20 -54.5555349873 +0.604829065124 0.0167683293681 0.13 20 -54.9026427256 +0.604829065124 0.0188586327877 0.13 20 -55.2989298327 +0.604829065124 0.0212095088792 0.13 20 -55.7521576101 +0.604829065124 0.0238534400643 0.13 20 -56.2715147275 +0.604829065124 0.0268269579528 0.13 20 -56.8679289384 +0.604829065124 0.0301711481053 0.13 20 -57.5544582549 +0.604829065124 0.033932217719 0.13 20 -58.3467844919 +0.604829065124 0.0381621340795 0.13 20 -59.2638393769 +0.604829065124 0.0429193426013 0.13 20 -60.3286032433 +0.604829065124 0.0482695743768 0.13 20 -61.569129619 +0.604829065124 0.0542867543932 0.13 20 -63.0198671272 +0.604829065124 0.0610540229659 0.13 20 -64.7233749257 +0.604829065124 0.0686648845004 0.13 20 -66.7325621061 +0.604829065124 0.0772244994584 0.13 20 -69.1136289466 +0.604829065124 0.0868511373751 0.13 20 -71.949954283 +0.604829065124 0.0976778110089 0.13 20 -75.3472668347 +0.604829065124 0.109854114199 0.13 20 -79.4405714507 +0.604829065124 0.123548288826 0.13 20 -84.4034926922 +0.604829065124 0.138949549437 0.13 20 -90.4609769705 +0.604829065124 0.156270697655 0.13 20 -97.9067065741 +0.604829065124 0.175751062485 0.13 20 -107.127199177 +0.604829065124 0.19765980717 0.13 20 -118.635520425 +0.604829065124 0.222299648253 0.13 20 -133.119043382 +0.604829065124 0.250011038262 0.13 20 -151.508141822 +0.604829065124 0.281176869797 0.13 20 -175.076849739 +0.604829065124 0.316227766017 0.13 15 -205.021050626 +0.693132601751 0.001 0.13 20 -52.1114244912 +0.693132601751 0.00112465782212 0.13 20 -52.1322167418 +0.693132601751 0.00126485521686 0.13 20 -52.1556257848 +0.693132601751 0.00142252931349 0.13 20 -52.1819844318 +0.693132601751 0.00159985871961 0.13 20 -52.2116687402 +0.693132601751 0.00179929362329 0.13 20 -52.245103873 +0.693132601751 0.00202358964773 0.13 20 -52.2827708158 +0.693132601751 0.00227584592607 0.13 20 -52.3252140894 +0.693132601751 0.0025595479227 0.13 20 -52.3730506275 +0.693132601751 0.00287861559235 0.13 20 -52.4269800186 +0.693132601751 0.00323745754282 0.13 20 -52.4877963522 +0.693132601751 0.00364103194931 0.13 20 -52.5564019594 +0.693132601751 0.00409491506238 0.13 20 -52.6338233976 +0.693132601751 0.00460537825582 0.13 20 -52.7212301042 +0.693132601751 0.00517947467923 0.13 20 -52.8199562406 +0.693132601751 0.00582513671247 0.13 20 -52.931526362 +0.693132601751 0.0065512855686 0.13 20 -53.0576856973 +0.693132601751 0.00736795455966 0.13 20 -53.2004360087 +0.693132601751 0.00828642772855 0.13 20 -53.3620782359 +0.693132601751 0.00931939576234 0.13 20 -53.5452634251 +0.693132601751 0.0104811313415 0.13 20 -53.7530538261 +0.693132601751 0.0117876863479 0.13 20 -53.9889965224 +0.693132601751 0.0132571136559 0.13 20 -54.2572125884 +0.693132601751 0.0149097165718 0.13 20 -54.5625055678 +0.693132601751 0.0167683293681 0.13 20 -54.9104941164 +0.693132601751 0.0188586327877 0.13 20 -55.3077750079 +0.693132601751 0.0212095088792 0.13 20 -55.7621244805 +0.693132601751 0.0238534400643 0.13 20 -56.2827482342 +0.693132601751 0.0268269579528 0.13 20 -56.8805934708 +0.693132601751 0.0301711481053 0.13 20 -57.5687404527 +0.693132601751 0.033932217719 0.13 20 -58.3628965005 +0.693132601751 0.0381621340795 0.13 20 -59.2820226442 +0.693132601751 0.0429193426013 0.13 20 -60.3491329641 +0.693132601751 0.0482695743768 0.13 20 -61.5923199582 +0.693132601751 0.0542867543932 0.13 20 -63.0460773868 +0.693132601751 0.0610540229659 0.13 20 -64.7530168607 +0.693132601751 0.0686648845004 0.13 20 -66.7661086492 +0.693132601751 0.0772244994584 0.13 20 -69.1516246725 +0.693132601751 0.0868511373751 0.13 20 -71.9930280384 +0.693132601751 0.0976778110089 0.13 20 -75.3961470837 +0.693132601751 0.109854114199 0.13 20 -79.4961050591 +0.693132601751 0.123548288826 0.13 20 -84.4666681074 +0.693132601751 0.138949549437 0.13 20 -90.5329530814 +0.693132601751 0.156270697655 0.13 20 -97.9888489959 +0.693132601751 0.175751062485 0.13 20 -107.221126372 +0.693132601751 0.19765980717 0.13 20 -118.743163044 +0.693132601751 0.222299648253 0.13 20 -133.24272167 +0.693132601751 0.250011038262 0.13 20 -151.65066816 +0.693132601751 0.281176869797 0.13 15 -174.789013977 +0.693132601751 0.316227766017 0.13 15 -204.642142091 +0.794328234724 0.001 0.13 20 -52.1118814583 +0.794328234724 0.00112465782212 0.13 20 -52.1327307285 +0.794328234724 0.00126485521686 0.13 20 -52.1562039138 +0.794328234724 0.00142252931349 0.13 20 -52.1826347175 +0.794328234724 0.00159985871961 0.13 20 -52.2124002007 +0.794328234724 0.00179929362329 0.13 20 -52.2459266572 +0.794328234724 0.00202358964773 0.13 20 -52.2836963452 +0.794328234724 0.00227584592607 0.13 20 -52.3262552195 +0.794328234724 0.0025595479227 0.13 20 -52.3742218288 +0.794328234724 0.00287861559235 0.13 20 -52.4282975814 +0.794328234724 0.00323745754282 0.13 20 -52.4892786176 +0.794328234724 0.00364103194931 0.13 20 -52.5580695806 +0.794328234724 0.00409491506238 0.13 20 -52.6356996344 +0.794328234724 0.00460537825582 0.13 20 -52.7233411569 +0.794328234724 0.00517947467923 0.13 20 -52.8223316275 +0.794328234724 0.00582513671247 0.13 20 -52.9341993465 +0.794328234724 0.0065512855686 0.13 20 -53.0606937723 +0.794328234724 0.00736795455966 0.13 20 -53.2038214464 +0.794328234724 0.00828642772855 0.13 20 -53.3658887112 +0.794328234724 0.00931939576234 0.13 20 -53.5495527252 +0.794328234724 0.0104811313415 0.13 20 -53.7578826572 +0.794328234724 0.0117876863479 0.13 20 -53.9944334301 +0.794328234724 0.0132571136559 0.13 20 -54.2633350077 +0.794328234724 0.0149097165718 0.13 20 -54.569401024 +0.794328234724 0.0167683293681 0.13 20 -54.9182616011 +0.794328234724 0.0188586327877 0.13 20 -55.3165265582 +0.794328234724 0.0212095088792 0.13 20 -55.7719869965 +0.794328234724 0.0238534400643 0.13 20 -56.2938655754 +0.794328234724 0.0268269579528 0.13 20 -56.8931288813 +0.794328234724 0.0301711481053 0.13 20 -57.5828793744 +0.794328234724 0.033932217719 0.13 20 -58.3788498488 +0.794328234724 0.0381621340795 0.13 20 -59.3000306339 +0.794328234724 0.0429193426013 0.13 20 -60.3694695972 +0.794328234724 0.0482695743768 0.13 20 -61.6152983097 +0.794328234724 0.0542867543932 0.13 20 -63.0720558594 +0.794328234724 0.0610540229659 0.13 20 -64.7824066237 +0.794328234724 0.0686648845004 0.13 20 -66.799382534 +0.794328234724 0.0772244994584 0.13 20 -69.1893278726 +0.794328234724 0.0868511373751 0.13 20 -72.0357910643 +0.794328234724 0.0976778110089 0.13 20 -75.4447015581 +0.794328234724 0.109854114199 0.13 20 -79.5513031227 +0.794328234724 0.123548288826 0.13 20 -84.5295064629 +0.794328234724 0.138949549437 0.13 20 -90.6046030607 +0.794328234724 0.156270697655 0.13 20 -98.0706945468 +0.794328234724 0.175751062485 0.13 20 -107.314812599 +0.794328234724 0.19765980717 0.13 20 -118.850659032 +0.794328234724 0.222299648253 0.13 20 -133.366402969 +0.794328234724 0.250011038262 0.13 15 -151.489327103 +0.794328234724 0.281176869797 0.13 15 -174.415599288 +0.794328234724 0.316227766017 0.13 15 -204.283938855 diff --git a/experiments/process.py b/experiments/process.py index b5e0d6d..ff722c8 100644 --- a/experiments/process.py +++ b/experiments/process.py @@ -11,9 +11,10 @@ if __name__ == "__main__": sys.exit("usage: {0} <file>".format(sys.argv[0])) root_victims, victims, non_victims, age = load(open(sys.argv[1])) - # alphas = 1. / np.arange(1000., 10000., 50.) # parameter of the time component - alphas = np.logspace(-2,2,num=5) - deltas = np.logspace(-10,-1,num=10)#np.arange(0.000001, 0.005, 0.001) # parameter of the structural component + # alphas = 1. / np.arange(1., 2000., 30.) # parameter of the time component + alphas = np.logspace(-3,-.1,num=50) + # deltas = np.arange(0.005, 0.5, 0.005) # parameter of the structural component + deltas = np.logspace(-3,-.5,num=50) with open("out.log", "w") as fh: for alpha, delta in product(alphas, deltas): beta, roots, ll = ml(root_victims, victims, non_victims, age, alpha, delta) @@ -21,7 +22,7 @@ if __name__ == "__main__": fh.write("\t".join(map(str, [alpha, delta, beta, roots, ll])) + "\n") fh.flush() - # alpha = 20000. + # alpha = 1/10. # delta = .5 # beta, roots, ll = ml(root_victims, victims, non_victims, age, alpha, delta) # print "\t".join(map(str, [1./alpha, delta, beta, roots, ll]))
\ No newline at end of file |
