diff options
| author | Thibaut Horel <thibaut.horel@gmail.com> | 2014-10-24 12:32:08 -0400 |
|---|---|---|
| committer | Thibaut Horel <thibaut.horel@gmail.com> | 2014-10-24 12:32:08 -0400 |
| commit | 4f7d4804234f5515a4dded8b05d9568653b7ae3c (patch) | |
| tree | 98d3bbb27692a861d602d52d1650e6d60c2b045c /paper/sections/appendix.tex | |
| parent | ece1d828d53d6123fcecb5ea8bf9b126d1728ccc (diff) | |
| download | fast-seeding-4f7d4804234f5515a4dded8b05d9568653b7ae3c.tar.gz | |
Add paper
Diffstat (limited to 'paper/sections/appendix.tex')
| -rw-r--r-- | paper/sections/appendix.tex | 76 |
1 files changed, 76 insertions, 0 deletions
diff --git a/paper/sections/appendix.tex b/paper/sections/appendix.tex new file mode 100644 index 0000000..64ca77e --- /dev/null +++ b/paper/sections/appendix.tex @@ -0,0 +1,76 @@ + +\noindent \textbf{From expectation to high probability.} + +%\begin{lemma}\label{lemma:nd} +% Let $A\subseteq\mathcal{U}$ and $x=(v,c)\in\mathcal{U}\setminus A$, then +% the function $b\mapsto \mathcal{O}(A\cup\{x\},b)-\mathcal{O}(A,b)$ is +% non-decreasing over $\reals^+$. +%\end{lemma} + + + + + + +\begin{proof}[of Proposition~\ref{main_result}] + For each realization of the neighbors $R$, let us define by $X_R$ the + random set which includes each $u\in R$ with probability $q_u$ on the + second day and: + \begin{displaymath} + \tilde{X}_R= + \begin{cases} + X_R&\text{if } |X_R|\leq t\\ + \emptyset&\text{otherwise} + \end{cases} + \end{displaymath} + where $t = k-|S|$. $\tilde{X}_R$ is a random variable over the feasible + solutions on the second day. As a consequence: + \begin{displaymath} + A(S) \geq \sum_{R\subseteq\neigh{S}} p_R\mathbb{E}\big[f(\tilde{X}_R)\big] + \end{displaymath} + Let us define by $Y$ the random set which includes each $u\in\neigh{X}$ + with probability $p_uq_u$ and: + \begin{displaymath} + \tilde{Y}= + \begin{cases} + Y&\text{if } |Y|\leq t\\ + \emptyset&\text{otherwise} + \end{cases}. + \end{displaymath} + It is easy to see that $\tilde{X}_R$ is the conditional expectation of + $\tilde{Y}$ given + $R$. Hence: + \begin{displaymath} + \sum_{R\subseteq\neigh{S}} p_R\mathbb{E}\big[f(\tilde{X}_R)\big] + = \mathbb{E}\big[f(\tilde{Y})\big] + \end{displaymath} + But: + \begin{align*} + \mathbb{E}\big[f(\tilde{Y})\big] + &=\sum_{T\subseteq\neigh{X}}\mathbb{P}\big[\tilde{Y}=T\big]f(T) + = \sum_{\substack{T\subseteq\neigh{X}\\|T|\leq + t}}\mathbb{P}\big[Y=T\big]f(T)\\ + &= \mathbb{E}\big[f(Y)\big]-\sum_{\substack{T\subseteq\neigh{X}\\|T|> + t}}\mathbb{P}\big[Y=T\big]f(T) + \end{align*} + Roughly: + \begin{displaymath} + \sum_{\substack{T\subseteq\neigh{X}\\|T|> + t}}\mathbb{P}\big[Y=T\big]f(T)\leq + \frac{1}{2}\mathbb{E}\big[f(Y)\big] + \end{displaymath} + Combining the above inequalities we get: + \begin{displaymath} + A(S)\geq \frac{1}{2} \mathbb{E}\big[f(Y)\big] + \end{displaymath} + But $\mathbb{E}\big[f(Y)\big]$ is precisely the value of the non-adaptive + solution computed by Algorithm~\ref{alg:comb} which is + a $\left(1-\frac{1}{e}\right)$ approximation of the + optimal non adaptive solution. Hence: + \begin{displaymath} + A(S) \geq \frac{1}{2}\left(1-\frac{1}{e}\right) OPT_{NA} + \end{displaymath} + Finally, we conclude with Proposition~\ref{prop:gap} +\end{proof} + + |
