summaryrefslogtreecommitdiffstats
path: root/paper/sections/appendix.tex
diff options
context:
space:
mode:
Diffstat (limited to 'paper/sections/appendix.tex')
-rw-r--r--paper/sections/appendix.tex76
1 files changed, 76 insertions, 0 deletions
diff --git a/paper/sections/appendix.tex b/paper/sections/appendix.tex
new file mode 100644
index 0000000..64ca77e
--- /dev/null
+++ b/paper/sections/appendix.tex
@@ -0,0 +1,76 @@
+
+\noindent \textbf{From expectation to high probability.}
+
+%\begin{lemma}\label{lemma:nd}
+% Let $A\subseteq\mathcal{U}$ and $x=(v,c)\in\mathcal{U}\setminus A$, then
+% the function $b\mapsto \mathcal{O}(A\cup\{x\},b)-\mathcal{O}(A,b)$ is
+% non-decreasing over $\reals^+$.
+%\end{lemma}
+
+
+
+
+
+
+\begin{proof}[of Proposition~\ref{main_result}]
+ For each realization of the neighbors $R$, let us define by $X_R$ the
+ random set which includes each $u\in R$ with probability $q_u$ on the
+ second day and:
+ \begin{displaymath}
+ \tilde{X}_R=
+ \begin{cases}
+ X_R&\text{if } |X_R|\leq t\\
+ \emptyset&\text{otherwise}
+ \end{cases}
+ \end{displaymath}
+ where $t = k-|S|$. $\tilde{X}_R$ is a random variable over the feasible
+ solutions on the second day. As a consequence:
+ \begin{displaymath}
+ A(S) \geq \sum_{R\subseteq\neigh{S}} p_R\mathbb{E}\big[f(\tilde{X}_R)\big]
+ \end{displaymath}
+ Let us define by $Y$ the random set which includes each $u\in\neigh{X}$
+ with probability $p_uq_u$ and:
+ \begin{displaymath}
+ \tilde{Y}=
+ \begin{cases}
+ Y&\text{if } |Y|\leq t\\
+ \emptyset&\text{otherwise}
+ \end{cases}.
+ \end{displaymath}
+ It is easy to see that $\tilde{X}_R$ is the conditional expectation of
+ $\tilde{Y}$ given
+ $R$. Hence:
+ \begin{displaymath}
+ \sum_{R\subseteq\neigh{S}} p_R\mathbb{E}\big[f(\tilde{X}_R)\big]
+ = \mathbb{E}\big[f(\tilde{Y})\big]
+ \end{displaymath}
+ But:
+ \begin{align*}
+ \mathbb{E}\big[f(\tilde{Y})\big]
+ &=\sum_{T\subseteq\neigh{X}}\mathbb{P}\big[\tilde{Y}=T\big]f(T)
+ = \sum_{\substack{T\subseteq\neigh{X}\\|T|\leq
+ t}}\mathbb{P}\big[Y=T\big]f(T)\\
+ &= \mathbb{E}\big[f(Y)\big]-\sum_{\substack{T\subseteq\neigh{X}\\|T|>
+ t}}\mathbb{P}\big[Y=T\big]f(T)
+ \end{align*}
+ Roughly:
+ \begin{displaymath}
+ \sum_{\substack{T\subseteq\neigh{X}\\|T|>
+ t}}\mathbb{P}\big[Y=T\big]f(T)\leq
+ \frac{1}{2}\mathbb{E}\big[f(Y)\big]
+ \end{displaymath}
+ Combining the above inequalities we get:
+ \begin{displaymath}
+ A(S)\geq \frac{1}{2} \mathbb{E}\big[f(Y)\big]
+ \end{displaymath}
+ But $\mathbb{E}\big[f(Y)\big]$ is precisely the value of the non-adaptive
+ solution computed by Algorithm~\ref{alg:comb} which is
+ a $\left(1-\frac{1}{e}\right)$ approximation of the
+ optimal non adaptive solution. Hence:
+ \begin{displaymath}
+ A(S) \geq \frac{1}{2}\left(1-\frac{1}{e}\right) OPT_{NA}
+ \end{displaymath}
+ Finally, we conclude with Proposition~\ref{prop:gap}
+\end{proof}
+
+