1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
|
\subsection{Submodularity of the problem}
Let $\mathcal{U} = \{(v_u,c_u);\, u\in\neigh{X}\}$ with $v_u=p_uw_u$ and
$c_u=p_u$. Let $b\in\reals^+$ and $A\subseteq\mathcal{U}$, we denote by
$\mathcal{O}(A,b)$ the optimal solution to:
\begin{displaymath}
\begin{split}
&\max_{q\in[0,1]^n}\sum_{u\in\neigh{X}}q_uv_u\\
&\text{s.t. }\sum_{u\in\neigh{X}}q_uc_u\leq b\text{ and } q_u=0\text{ if
}u\notin A
\end{split}
\end{displaymath}
so that the optimization problem \eqref{eq:relaxed-multi} for relaxed
non-adaptive policies can be written:
\begin{equation}\label{eq:sub}
\begin{split}
&\max_{S\subseteq X}\mathcal{O}\big(\neigh{S},k-|S|\big)\\
&\text{s.t. }|S|\leq k
\end{split}
\end{equation}
In this section, we will show how \eqref{eq:sub} can be reduced to a submodular
maximization problem, leading to a fast combinatorial algorithm for the
adaptive seeding model in the voter model.
\begin{lemma}\label{lemma:nd}
Let $A\subseteq\mathcal{U}$ and $x=(v,c)\in\mathcal{U}\setminus A$, then
the function $b\mapsto \mathcal{O}(A\cup\{x\},b)-\mathcal{O}(A,b)$ is
non-decreasing over $\reals^+$.
\end{lemma}
\begin{proof}
\emph{W.l.o.g} we can rename and order the pairs in $A$ so that:
\begin{displaymath}
\frac{v_1}{c_1}\geq \frac{v_2}{c_2}\geq\ldots\geq\frac{v_m}{c_m}.
\end{displaymath}
Then, $\mathcal{O}(A,b)$ has the following simple piecewise linear expression:
\begin{equation}\label{eq:pw}
\mathcal{O}(A,b) =
\begin{cases}
b\frac{v_1}{c_1}&\text{if }0\leq b<c_1\\
\sum_{k=1}^{i-1}v_k + \left(b-\sum_{k=1}^{i-1}c_k\right)\frac{v_i}{c_i}
&\text{if } \sum_{k=1}^{i-1}c_k\leq b< \sum_{k=1}^ic_k\\
\sum_{k=1}^m v_k&\text{if } b\geq\sum_{i=1}^m c_k
\end{cases}
\end{equation}
Let us define for $t\in\reals^+$, $n(t)\defeq \inf\Big\{i\text{ s.t.
} \sum_{k=1}^i c_k > t\Big \}$ with $n(t)=+\infty$ when the set is empty. In
particular, note that $x\mapsto n(t)$ is non-decreasing. Denoting
$\partial_+\mathcal{O}_A$ the right derivative of $\mathcal{O}(A,\cdot)$, one
can write $\partial_+\mathcal{O}_A(t)
=\frac{v_{n(t)}}{c_{n(t)}}$, with the convention that
$\frac{v_\infty}{c_\infty} = 0$.
Writing $i \defeq \sup\Big\{j\text{ s.t.
} \frac{v_j}{c_j}\geq\frac{v}{c}\Big\}$, it is easy to see that
$\partial_+\mathcal{O}_{A\cup\{x\}}\geq\partial_+\mathcal{O}_A$. Indeed:
\begin{enumerate}
\item if $n(t)\leq i$ then $\partial_+\mathcal{O}_{A\cup\{x\}}(t)
= \partial_+\mathcal{O}_A(t)= \frac{v_{n(t)}}{c_{n(t)}}$.
\item if $n(t)\geq i+1$ and $n(t-c)\leq i$ then $\partial_+\mathcal{O}_{A\cup\{x\}}(t)
= \frac{v}{c}\geq\frac{v_{n(t)}}{c_{n(t)}}= \partial_+\mathcal{O}_A(t)$.
\item if $n(t-c)\geq i+1$, then $\partial_+\mathcal{O}_{A\cup\{x\}}
= \frac{v_{n(t-c)}}{c_{n(t-c)}}\geq
\frac{v_{n(t)}}{c_{n(t)}}=\partial_+\mathcal{O}_A(t)$.
\end{enumerate}
Let us now consider $b$ and $c$ such that $b\leq c$. Then, using the integral
representation of $\mathcal{O}(A\cup\{x\},\cdot)$ and $\mathcal{O}(A,\cdot)$, we get:
\begin{multline*}
\mathcal{O}(A\cup\{x\},c)-\mathcal{O}(A\cup\{x\},b)=\int_b^c\partial_+\mathcal{O}_{A\cup\{x\}}(t)dt\\
\geq\int_b^c\partial_+\mathcal{O}_A(t)dt=\mathcal{O}(A,c)-\mathcal{O}(A,b)
\end{multline*}
Re-ordering the terms, $\mathcal{O}(A\cup\{x\},c)-\mathcal{O}(A,c)\geq
\mathcal{O}(A\cup\{x\},b)-\mathcal{O}(A,b)$
which concludes the proof of the lemma.
\end{proof}
\begin{lemma}\label{lemma:sub}
Let $b\in\reals^+$, then the function $A\mapsto \mathcal{O}(A,b)$ is submodular.
\end{lemma}
\begin{proof}
Let $A\subseteq\mathcal{U}$ and $x, y\in\mathcal{U}\setminus A$. Using the
second-order characterization of submodular functions, it suffices to show
that:
\begin{equation}\label{eq:so}
\mathcal{O}(A\cup\{x\},b)-\mathcal{O}(A,b)\geq
\mathcal{O}(A\cup\{y\}\cup\{x\},b)-\mathcal{O}(A\cup\{y\},b)
\end{equation}
Let us write $x=(v_x, c_x)$ and $y=(v_y,c_y)$. We distinguish two cases
based on the relative position of $\frac{v_x}{c_x}$ and $\frac{v_y}{c_y}$.
The following notations will be useful: $S_A^x \defeq \big\{(v,c)\in
A\text{ s.t. }\frac{v_x}{c_x}\leq\frac{v}{c}\big\}$ and $P_A^x\defeq
A\setminus S_A^x$.
\textbf{Case 1:} If $\frac{v_y}{c_y}\geq \frac{v_x}{c_x}$, then one can
write:
\begin{gather*}
\mathcal{O}(A\cup\{y\}\cup\{x\},b) = \mathcal{O}(P_A^y\cup\{y\},b_1)+
\mathcal{O}(S_A^y\cup\{x\},b_2)\\
\mathcal{O}(A\cup\{y\},b) = \mathcal{O}(P_A^y\cup\{y\},b_1)
+ \mathcal{O}(S_A^y,b_2)
\end{gather*}
where $b_1$ is the fraction of the budget $b$ spent on $P_A^y\cup\{y\}$ and
$b_2=b-b_1$.
Similarly:
\begin{gather*}
\mathcal{O}(A\cup\{x\},b) = \mathcal{O}(P_A^y, c_1) + \mathcal{O}(S_A^y\cup\{x\},c_2)\\
\mathcal{O}(A, b) = \mathcal{O}(P_A^y, c_1) + \mathcal{O}(S_A^y,c_2)
\end{gather*}
where $c_1$ is the fraction of the budget $b$ spent on $P_A^y$ and $c_2
= b - c_1$.
Note that $b_1\geq c_1$: an optimal solution will first spent as much
budget as possible on $P_A^y\cup\{y\}$ before adding elements in
$S_A^y\cup\{x\}$. We can now rewrite \eqref{eq:so}:
\begin{displaymath}
\mathcal{O}(S_A^y\cup\{x\},c_2)+\mathcal{O}(S_A^y,c_2)\geq
\mathcal{O}(S_A^y\cup\{x\},b_2)+\mathcal{O}(S_A^y,b_2)
\end{displaymath}
with $c_2\geq b_2$. This inequality is true by Lemma~\ref{lemma:nd}.
\textbf{Case 2:} If $\frac{v_x}{c_x}\geq \frac{v_y}{c_y}$, we now decompose
the solution on $P_A^x$ and $S_A^x$:
\begin{gather*}
\mathcal{O}(A\cup\{x\},b) = \mathcal{O}(P_A^x\cup\{x\},b_1)
+ \mathcal{O}(S_A^x,b_2)\\
\mathcal{O}(A,b) = \mathcal{O}(P_A^x,c_1)+\mathcal{O}(S_A^x,c_2)
\intertext{and}
\mathcal{O}(A\cup\{y\}\cup\{x\},b) = \mathcal{O}(P_A^x\cup\{x\},b_1)
+ \mathcal{O}(S_A^x\cup\{y\},b_2)\\
\mathcal{O}(A\cup\{y\},b) = \mathcal{O}(P_A^x,c_1)+\mathcal{O}(S_A^x\cup\{y\},c_2)
\end{gather*}
with $b_1+b_2=b$, $c_1+c_2=b$ and $b_2\leq c_2$. The equation \eqref{eq:so}
can be rewritten:
\begin{displaymath}
\mathcal{O}(S_A^x,b_2)-\mathcal{O}(S_A^x,c_2)\geq
\mathcal{O}(S_A^x\cup\{u\},b_2)-\mathcal{O}(S_A^x\cup\{y\},c_2)
\end{displaymath}
Reordering the terms, we get:
\begin{displaymath}
\mathcal{O}(S_A^x\cup\{y\},c_2) -\mathcal{O}(S_A^x,c_2)\geq
\mathcal{O}(S_A^x\cup\{u\},b_2)-\mathcal{O}(S_A^x,b_2)
\end{displaymath}
with $c_2\geq b_2$. This is again true by Lemma~\ref{lemma:nd}.
\end{proof}
\begin{proposition}\label{prop:sub}
Let $b\in\mathbf{R}^+$, then the function
$S\mapsto\mathcal{O}(\neigh{S},b)$ is submodular over $2^X$.
\end{proposition}
\begin{proof}
Let us consider $S$ and $T$ such that $S\subseteq T\subseteq X$ and $x\in
X\setminus T$. In particular, note that $\neigh{S}\subseteq\neigh{T}$.
Let us write $\neigh{S\cup\{x\}}=\neigh{S}\cup R$ with $\neigh{S}\cap
R=\emptyset$ and similarly, $\neigh{T\cup\{x\}}=\neigh{T}\cup R'$ with
$\neigh{T}\cap R'=\emptyset$. Using these notations, it is clear that
$R'\subseteq R$. Let us enumerate the elements in $R'$ using an arbitrary
order: $R'=\{u_1,\ldots,u_k\}$. Then one can write:
\begin{displaymath}
\begin{split}
\mathcal{O}(\neigh{T\cup\{x\}},b)&=\mathcal{O}(\neigh{T}\cup R',b)\\
&=\sum_{i=1}^k\mathcal{O}(\neigh{T}\cup\{u_1,\ldots u_i\},b)
-\mathcal{O}(\neigh{T}\cup\{u_1,\ldots u_{i-1}\},b)\\
&\leq \sum_{i=1}^k\mathcal{O}(\neigh{S}\cup\{u_1,\ldots u_i\},b)
-\mathcal{O}(\neigh{S}\cup\{u_1,\ldots u_{i-1}\},b)\\
&=\mathcal{O}(\neigh{S}\cup R',b)-\mathcal{O}(\neigh{S},b)
\end{split}
\end{displaymath}
where the inequality comes from the submodularity of
$A\mapsto\mathcal{O}(A,b)$ proved in Lemma~\ref{lemma:sub}. This same
function is also obviously set-increasing, hence:
\begin{displaymath}
\begin{split}
\mathcal{O}(\neigh{S}\cup R',b)-\mathcal{O}(\neigh{S},b)
&\leq \mathcal{O}(\neigh{S}\cup R,b)-\mathcal{O}(\neigh{S},b)\\
&=\mathcal{O}(\neigh{S\cup\{x\}},b)-\mathcal{O}(\neigh{S},b)
\end{split}
\end{displaymath}
This concludes the proof of the proposition.
\end{proof}
Using Proposition~\ref{prop:sub}, we can finally reduce \eqref{eq:sub} to
a submodular optimization problem by treating $|S|$ as a variable to optimize.
Specifically, \eqref{eq:sub} is equivalent to the following problem:
\begin{equation}\label{eq:sub2}
\begin{split}
\max_{1\leq t\leq k}\max_{|S|\leq k-t}\mathcal{O}(\neigh{S},t)
\end{split}
\end{equation}
\begin{algorithm}
\caption{Combinatorial algorithm}
\label{alg:comb}
\algsetup{indent=2em}
\begin{algorithmic}[1]
\STATE $S\leftarrow \emptyset$
\FOR{$t=1$ \TO $k-1$}
\STATE $S_t\leftarrow \emptyset$
\FOR{$i=1$ \TO $k-t$}
\STATE $x^*\leftarrow\argmax_{x\in
X\setminus S_t}\mathcal{O}(\neigh{S_t\cup\{x\}},t)
-\mathcal{O}(\neigh{S_t},t)$\label{line:argmax}
\STATE $S_t\leftarrow S_t\cup\{x^*\}$
\ENDFOR
\IF{$\mathcal{O}(\neigh{S_t},t)>\mathcal{O}(\neigh{S},k-|S|)$}
\STATE $S\leftarrow S_t$
\ENDIF
\ENDFOR
\RETURN $S$
\end{algorithmic}
\end{algorithm}
\begin{proposition}
Let $S$ be the set computed by Algorithm~\ref{alg:comb} and let us denote
by $A(S)$ the value of the adaptive policy which selects $S$ on the first
day. Then:
\begin{displaymath}
A(S) \geq \frac{1}{2}\left(1-\frac{1}{e}\right)OPT.
\end{displaymath}
Furthermore, Algorithm~\ref{alg:comb} runs in time $O\left(n\log
n+k^2m\min(\frac{k}{p_\text{min}},n)\right)$, where $m=|X|$, $n=|\neigh{X}|$
and $p_\text{min} =\min\{p_u,u\in\neigh{X}\}$.
\end{proposition}
\begin{proof}
For each realization of the neighbors $R$, let us define by $X_R$ the
random set which includes each $u\in R$ with probability $q_u$ on the
second day and:
\begin{displaymath}
\tilde{X}_R=
\begin{cases}
X_R&\text{if } |X_R|\leq t\\
\emptyset&\text{otherwise}
\end{cases}
\end{displaymath}
where $t = k-|S|$. $\tilde{X}_R$ is a random variable over the feasible
solutions on the second day. As a consequence:
\begin{displaymath}
A(S) \geq \sum_{R\subseteq\neigh{S}} p_R\mathbb{E}\big[f(\tilde{X}_R)\big]
\end{displaymath}
Let us define by $Y$ the random set which includes each $u\in\neigh{X}$
with probability $p_uq_u$ and:
\begin{displaymath}
\tilde{Y}=
\begin{cases}
Y&\text{if } |Y|\leq t\\
\emptyset&\text{otherwise}
\end{cases}.
\end{displaymath}
It is easy to see that $\tilde{X}_R$ is the conditional expectation of
$\tilde{Y}$ given
$R$. Hence:
\begin{displaymath}
\sum_{R\subseteq\neigh{S}} p_R\mathbb{E}\big[f(\tilde{X}_R)\big]
= \mathbb{E}\big[f(\tilde{Y})\big]
\end{displaymath}
But:
\begin{align*}
\mathbb{E}\big[f(\tilde{Y})\big]
&=\sum_{T\subseteq\neigh{X}}\mathbb{P}\big[\tilde{Y}=T\big]f(T)
= \sum_{\substack{T\subseteq\neigh{X}\\|T|\leq
t}}\mathbb{P}\big[Y=T\big]f(T)\\
&= \mathbb{E}\big[f(Y)\big]-\sum_{\substack{T\subseteq\neigh{X}\\|T|>
t}}\mathbb{P}\big[Y=T\big]f(T)
\end{align*}
Roughly:
\begin{displaymath}
\sum_{\substack{T\subseteq\neigh{X}\\|T|>
t}}\mathbb{P}\big[Y=T\big]f(T)\leq
\frac{1}{2}\mathbb{E}\big[f(Y)\big]
\end{displaymath}
Combining the above inequalities we get:
\begin{displaymath}
A(S)\geq \frac{1}{2} \mathbb{E}\big[f(Y)\big]
\end{displaymath}
But $\mathbb{E}\big[f(Y)\big]$ is precisely the value of the non-adaptive
solution computed by Algorithm~\ref{alg:comb} which is
a $\left(1-\frac{1}{e}\right)$ approximation of the
optimal non adaptive solution. Hence:
\begin{displaymath}
A(S) \geq \frac{1}{2}\left(1-\frac{1}{e}\right) OPT_{NA}
\end{displaymath}
Finally, we conclude with Proposition~\ref{prop:gap}
\end{proof}
\subsection{From expectation to high probability}
\subsection{Questions}
\begin{itemize}
\item Can it be parallelized (map-reduce)?
\end{itemize}
|