summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorThibaut Horel <thibaut.horel@gmail.com>2012-10-23 08:29:11 -0700
committerThibaut Horel <thibaut.horel@gmail.com>2012-10-23 08:29:11 -0700
commit68c4f52bcad25ffcff17bed18f4bec45513c9a33 (patch)
treea6f311b3e35a9786933cef90474ee34b6e316560
parent1d83a5bd323d5d420d16ab6531b76c7684fb16e7 (diff)
downloadrecommendation-68c4f52bcad25ffcff17bed18f4bec45513c9a33.tar.gz
Some typo fixes, lemmas for the mechanism properties
-rw-r--r--proof.tex29
1 files changed, 25 insertions, 4 deletions
diff --git a/proof.tex b/proof.tex
index a26c191..b38d7e6 100644
--- a/proof.tex
+++ b/proof.tex
@@ -8,6 +8,7 @@
\newtheorem{fact}{Fact}
\newtheorem{example}{Example}
\newtheorem{prop}{Proposition}
+\newtheorem{theorem}{Theorem}
\newcommand{\var}{\mathop{\mathrm{Var}}}
\newcommand{\condexp}[2]{\mathop{\mathbb{E}}\left[#1|#2\right]}
\newcommand{\expt}[1]{\mathop{\mathbb{E}}\left[#1\right]}
@@ -172,8 +173,8 @@ We will consider two relaxations of the value function $V$ over $\mathcal{N}$:
Thus, $F_\lambda$ is a degree 2 polynomial whose dominant coefficient is:
\begin{multline*}
\frac{c_i}{c_j}\mathbb{E}_{S'\sim P_{\mathcal{N}\setminus\{i,j\}}(S',\lambda)}\Big[
- V(S'\cup\{i\})+f(S'\cup\{i\})\\
- -V(S'\cup\{i,j\})-f(S')\Big]
+ V(S'\cup\{i\})+V(S'\cup\{i\})\\
+ -V(S'\cup\{i,j\})-V(S')\Big]
\end{multline*}
which is positive by submodularity of $V$. Hence, the maximum of
$F_\lambda$ over the interval given in \eqref{eq:convex-interval} is
@@ -335,10 +336,10 @@ We will consider two relaxations of the value function $V$ over $\mathcal{N}$:
\State $x^* \gets \argmax_{x\in[0,1]^n} \{L_{\mathcal{N}\setminus\{i^*\}}(x)
\,|\, c(x)\leq\frac{B}{2}\}$
\Statex
- \If{$L(x^*) < CV(\{i^*\})$}
+ \If{$L(x^*) < CV(i^*)$}
\State \textbf{return} $\{i^*\}$
\Else
- \State $i \gets \argmax_{1\leq j\leq n}\frac{V(\{j\})}{c_j}$
+ \State $i \gets \argmax_{1\leq j\leq n}\frac{V(j)}{c_j}$
\State $S \gets \emptyset$
\While{$c_i\leq \frac{B}{2}\frac{V(S\cup\{i\})-V(S)}{V(S\cup\{i\})}$}
\State $S \gets S\cup\{i\}$
@@ -349,4 +350,24 @@ We will consider two relaxations of the value function $V$ over $\mathcal{N}$:
\EndIf
\end{algorithmic}
\end{algorithm}
+
+\begin{lemma}
+The mechanism is monotone.
+\end{lemma}
+
+\begin{lemma}
+The mechanism is budget feasible.
+\end{lemma}
+
+\begin{lemma}
+ Let us denote by $S_M$ the set returned by the mechanism. Then:
+ \begin{displaymath}
+ V(S_M) \geq C\cdot OPT(V, \mathcal{N}, B)
+ \end{displaymath}
+\end{lemma}
+
+\begin{theorem}
+ The mechanism is individually rational, truthful and has an approximation
+ ratio of
+\end{theorem}
\end{document}