summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorThibaut Horel <thibaut.horel@gmail.com>2012-10-23 11:03:38 -0700
committerThibaut Horel <thibaut.horel@gmail.com>2012-10-23 11:03:38 -0700
commit897a528650ac0204391027d47a99535e0b8b5938 (patch)
tree58b6d55b25c0c0a7349de97af2cdd3bf4ff1d9ba
parent68c4f52bcad25ffcff17bed18f4bec45513c9a33 (diff)
downloadrecommendation-897a528650ac0204391027d47a99535e0b8b5938.tar.gz
Proof of the approximation ratio
-rw-r--r--proof.tex54
1 files changed, 50 insertions, 4 deletions
diff --git a/proof.tex b/proof.tex
index b38d7e6..d8cacbf 100644
--- a/proof.tex
+++ b/proof.tex
@@ -205,7 +205,8 @@ We will consider two relaxations of the value function $V$ over $\mathcal{N}$:
\begin{displaymath}
\frac{F_\mathcal{N}(\lambda)}{L_\mathcal{N}(\lambda)}
\sim_{\lambda\rightarrow 0}
- \frac{\sum_{i\in S}\partial_i F_\mathcal{N}(0)}{\sum_{i\in S}\partial_i L_\mathcal{N}(0)}
+ \frac{\sum_{i\in \mathcal{N}}\lambda_i\partial_i F_\mathcal{N}(0)}
+ {\sum_{i\in\mathcal{N}}\lambda_i\partial_i L_\mathcal{N}(0)}
\end{displaymath}
and that an interior critical point of the ratio
$F_\mathcal{N}(\lambda)/L_\mathcal{N}(\lambda)$ is defined by:
@@ -324,8 +325,8 @@ We will consider two relaxations of the value function $V$ over $\mathcal{N}$:
\begin{lemma}
\begin{displaymath}
- OPT(L_\mathcal{N}, B) \leq \frac{1}{C}OPT(V,\mathcal{N},B)
- + \max_{i\in\mathcal{N}}V(i)
+ OPT(L_\mathcal{N}, B) \leq \frac{1}{C_\kappa}\big(2 OPT(V,\mathcal{N},B)
+ + \max_{i\in\mathcal{N}}V(i)\big)
\end{displaymath}
\end{lemma}
@@ -362,10 +363,55 @@ The mechanism is budget feasible.
\begin{lemma}
Let us denote by $S_M$ the set returned by the mechanism. Then:
\begin{displaymath}
- V(S_M) \geq C\cdot OPT(V, \mathcal{N}, B)
+ V(S_M) \geq ?\cdot OPT(V, \mathcal{N}, B)
\end{displaymath}
\end{lemma}
+\begin{proof}
+
+ If the condition on line 3 of the algorithm holds, then:
+ \begin{displaymath}
+ V(i^*) \geq \frac{1}{C}L(x^*) \geq
+ \frac{1}{C}OPT(V,\mathcal{N}\setminus\{i\}, B)
+ \end{displaymath}
+
+ But:
+ \begin{displaymath}
+ OPT(V,\mathcal{N},B) \leq OPT(V,\mathcal{N}\setminus\{i\}, B) + V(i^*)
+ \end{displaymath}
+
+ Hence:
+ \begin{displaymath}
+ V(i^*) \geq \frac{C}{C+1} OPT(V,\mathcal{N}, B)
+ \end{displaymath}
+
+ If the condition of the algorithm does not hold:
+ \begin{align*}
+ V(i^*) & \leq \frac{1}{C}L(x^*) \leq \frac{1}{C\cdot C_\kappa}
+ \big(2 OPT(V,\mathcal{N}, B) + V(i^*)\big)\\
+ & \leq \frac{1}{C\cdot C_\kappa}\left(\frac{2e}{e-1}\big(3 V(S_M)
+ + 2 V(i^*)\big)
+ + V(i^*)\right)
+ \end{align*}
+
+ Thus:
+ \begin{align*}
+ V(i^*) \leq \frac{6e}{C\cdot C_\kappa(e-1)- 5e + 1} V(S_M)
+ \end{align*}
+
+ Finally, using again that:
+ \begin{displaymath}
+ OPT(V,\mathcal{N},B) \leq \frac{e}{e-1}\big(3 V(S_M) + 2 V(i^*)\big)
+ \end{displaymath}
+
+ We get:
+ \begin{displaymath}
+ OPT(V, \mathcal{N}, B) \leq \frac{e}{e-1}\left( 3 + \frac{12e}{C\cdot
+ C_\kappa(e-1) -5e +1}\right) V(S_M)
+ \end{displaymath}
+
+\end{proof}
+
\begin{theorem}
The mechanism is individually rational, truthful and has an approximation
ratio of