diff options
| author | Thibaut Horel <thibaut.horel@gmail.com> | 2012-10-24 10:32:51 -0700 |
|---|---|---|
| committer | Thibaut Horel <thibaut.horel@gmail.com> | 2012-10-24 10:32:51 -0700 |
| commit | 940298a5287a2811aa66120e42da55d749503806 (patch) | |
| tree | fd0e58fd8d20c7785b9e66af7440c1e25239818e | |
| parent | ae40e0f8d6c5f2a8511722393a3f253a0cfc87b0 (diff) | |
| download | recommendation-940298a5287a2811aa66120e42da55d749503806.tar.gz | |
Specify the optimal value for C and the approximation ration
| -rw-r--r-- | proof.tex | 38 |
1 files changed, 34 insertions, 4 deletions
@@ -364,7 +364,9 @@ We will consider two relaxations of the value function $V$ over $\mathcal{N}$: Putting \eqref{eq:e1} and \eqref{eq:e2} together gives the results. \end{proof} -\begin{algorithm} +\subsection{The mechanism} + +\begin{algorithm}\label{mechanism} \caption{Budget feasible mechanism for ridge regression} \begin{algorithmic}[1] \State $i^* \gets \argmax_{j\in\mathcal{N}}V(j)$ @@ -386,6 +388,10 @@ We will consider two relaxations of the value function $V$ over $\mathcal{N}$: \end{algorithmic} \end{algorithm} +The constant $C$ which appears in the mechanism is unspecified for now. We can +make the analysis regardless of its value. The optimal value will be specified +in the theorem. + \begin{lemma} The mechanism is monotone. \end{lemma} @@ -395,9 +401,16 @@ The mechanism is budget feasible. \end{lemma} \begin{lemma} - Let us denote by $S_M$ the set returned by the mechanism. Then: + Let us denote by $S_M$ the set returned by the mechanism. Let us also + write: \begin{displaymath} - V(S_M) \geq ?\cdot OPT(V, \mathcal{N}, B) + C_{\textrm{max}} = \max\left(1+C,\frac{e}{e-1}\left( 3 + \frac{12e}{C\cdot + C_\mu(e-1) -5e +1}\right)\right) + \end{displaymath} + + Then: + \begin{displaymath} + V(S_M) \geq C_{\textrm{max}}\cdot OPT(V, \mathcal{N}, B) \end{displaymath} \end{lemma} @@ -445,8 +458,25 @@ The mechanism is budget feasible. \end{displaymath} \end{proof} +The optimal value for $C$ is: +\begin{displaymath} + C^* = \arg\min C_{\textrm{max}} +\end{displaymath} + +This equation has two solutions. Only one of those is such that: +\begin{displaymath} + C\cdot C_\mu(e-1) -5e +1 \geq 0 +\end{displaymath} +which is a needed in the proof of the previous lemma. Computing this solution, +we can state the main result of this section. + \begin{theorem} The mechanism is individually rational, truthful and has an approximation - ratio of + ratio of: + \begin{multline*} + 1 + C^* = \frac{5e-1 + C_\mu(4e-1)}{2C_\mu(e-1)}\\ + + \frac{\sqrt{C_\mu^2(1+2e)^2 + + 2C_\mu(14e^2+5e+1) + (1-5e)^2}}{2C_\mu(e-1)} + \end{multline*} \end{theorem} \end{document} |
