summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorThibaut Horel <thibaut.horel@gmail.com>2012-10-24 10:32:51 -0700
committerThibaut Horel <thibaut.horel@gmail.com>2012-10-24 10:32:51 -0700
commit940298a5287a2811aa66120e42da55d749503806 (patch)
treefd0e58fd8d20c7785b9e66af7440c1e25239818e
parentae40e0f8d6c5f2a8511722393a3f253a0cfc87b0 (diff)
downloadrecommendation-940298a5287a2811aa66120e42da55d749503806.tar.gz
Specify the optimal value for C and the approximation ration
-rw-r--r--proof.tex38
1 files changed, 34 insertions, 4 deletions
diff --git a/proof.tex b/proof.tex
index 7b2088f..25061bd 100644
--- a/proof.tex
+++ b/proof.tex
@@ -364,7 +364,9 @@ We will consider two relaxations of the value function $V$ over $\mathcal{N}$:
Putting \eqref{eq:e1} and \eqref{eq:e2} together gives the results.
\end{proof}
-\begin{algorithm}
+\subsection{The mechanism}
+
+\begin{algorithm}\label{mechanism}
\caption{Budget feasible mechanism for ridge regression}
\begin{algorithmic}[1]
\State $i^* \gets \argmax_{j\in\mathcal{N}}V(j)$
@@ -386,6 +388,10 @@ We will consider two relaxations of the value function $V$ over $\mathcal{N}$:
\end{algorithmic}
\end{algorithm}
+The constant $C$ which appears in the mechanism is unspecified for now. We can
+make the analysis regardless of its value. The optimal value will be specified
+in the theorem.
+
\begin{lemma}
The mechanism is monotone.
\end{lemma}
@@ -395,9 +401,16 @@ The mechanism is budget feasible.
\end{lemma}
\begin{lemma}
- Let us denote by $S_M$ the set returned by the mechanism. Then:
+ Let us denote by $S_M$ the set returned by the mechanism. Let us also
+ write:
\begin{displaymath}
- V(S_M) \geq ?\cdot OPT(V, \mathcal{N}, B)
+ C_{\textrm{max}} = \max\left(1+C,\frac{e}{e-1}\left( 3 + \frac{12e}{C\cdot
+ C_\mu(e-1) -5e +1}\right)\right)
+ \end{displaymath}
+
+ Then:
+ \begin{displaymath}
+ V(S_M) \geq C_{\textrm{max}}\cdot OPT(V, \mathcal{N}, B)
\end{displaymath}
\end{lemma}
@@ -445,8 +458,25 @@ The mechanism is budget feasible.
\end{displaymath}
\end{proof}
+The optimal value for $C$ is:
+\begin{displaymath}
+ C^* = \arg\min C_{\textrm{max}}
+\end{displaymath}
+
+This equation has two solutions. Only one of those is such that:
+\begin{displaymath}
+ C\cdot C_\mu(e-1) -5e +1 \geq 0
+\end{displaymath}
+which is a needed in the proof of the previous lemma. Computing this solution,
+we can state the main result of this section.
+
\begin{theorem}
The mechanism is individually rational, truthful and has an approximation
- ratio of
+ ratio of:
+ \begin{multline*}
+ 1 + C^* = \frac{5e-1 + C_\mu(4e-1)}{2C_\mu(e-1)}\\
+ + \frac{\sqrt{C_\mu^2(1+2e)^2
+ + 2C_\mu(14e^2+5e+1) + (1-5e)^2}}{2C_\mu(e-1)}
+ \end{multline*}
\end{theorem}
\end{document}