diff options
| author | Thibaut Horel <thibaut.horel@gmail.com> | 2012-10-23 15:13:51 -0700 |
|---|---|---|
| committer | Thibaut Horel <thibaut.horel@gmail.com> | 2012-10-23 15:13:51 -0700 |
| commit | 9a767039fd69ef1c8e2d65a6adc36fd5ae269e51 (patch) | |
| tree | 532afc9b6f1a78592aaf7ae7e627b9738db1735d | |
| parent | 897a528650ac0204391027d47a99535e0b8b5938 (diff) | |
| download | recommendation-9a767039fd69ef1c8e2d65a6adc36fd5ae269e51.tar.gz | |
Fix some typos
| -rw-r--r-- | proof.tex | 6 |
1 files changed, 3 insertions, 3 deletions
@@ -335,7 +335,7 @@ We will consider two relaxations of the value function $V$ over $\mathcal{N}$: \begin{algorithmic}[1] \State $i^* \gets \argmax_{j\in\mathcal{N}}V(j)$ \State $x^* \gets \argmax_{x\in[0,1]^n} \{L_{\mathcal{N}\setminus\{i^*\}}(x) - \,|\, c(x)\leq\frac{B}{2}\}$ + \,|\, c(x)\leq B\}$ \Statex \If{$L(x^*) < CV(i^*)$} \State \textbf{return} $\{i^*\}$ @@ -344,7 +344,7 @@ We will consider two relaxations of the value function $V$ over $\mathcal{N}$: \State $S \gets \emptyset$ \While{$c_i\leq \frac{B}{2}\frac{V(S\cup\{i\})-V(S)}{V(S\cup\{i\})}$} \State $S \gets S\cup\{i\}$ - \State $i \gets \argmax_{j\in\{1,\ldots,n\}\setminus S} + \State $i \gets \argmax_{j\in\mathcal{N}\setminus S} \frac{V(S\cup\{j\})-V(S)}{c_j}$ \EndWhile \State \textbf{return} $S$ @@ -382,7 +382,7 @@ The mechanism is budget feasible. Hence: \begin{displaymath} - V(i^*) \geq \frac{C}{C+1} OPT(V,\mathcal{N}, B) + V(i^*) \geq \frac{1}{C+1} OPT(V,\mathcal{N}, B) \end{displaymath} If the condition of the algorithm does not hold: |
