summaryrefslogtreecommitdiffstats
path: root/appendix.tex
diff options
context:
space:
mode:
authorStratis Ioannidis <stratis@stratis-Latitude-E6320.(none)>2013-07-06 21:58:31 -0700
committerStratis Ioannidis <stratis@stratis-Latitude-E6320.(none)>2013-07-06 21:58:31 -0700
commita8038aaa6c32a43e95b2730a3b8f63a286193a09 (patch)
tree670f286749cc433b7d3ef273c5a960c0478e4e2c /appendix.tex
parent6f255bcbe303748bfface378be199cb9d9b5012f (diff)
downloadrecommendation-a8038aaa6c32a43e95b2730a3b8f63a286193a09.tar.gz
moved algo to appendix
Diffstat (limited to 'appendix.tex')
-rw-r--r--appendix.tex91
1 files changed, 65 insertions, 26 deletions
diff --git a/appendix.tex b/appendix.tex
index 5dce278..0f6e6b4 100644
--- a/appendix.tex
+++ b/appendix.tex
@@ -214,7 +214,7 @@ the proof of the lemma. \qed
\end{displaymath}
which is positive by submodularity of $V$. Hence, the maximum of
$F_\lambda$ over the interval given in \eqref{eq:convex-interval} is
- attained at one of its limit, at which either the $i$-th or $j$-th component of
+ attained at one of its limits, at which either the $i$-th or $j$-th component of
$\lambda_\varepsilon$ becomes integral. \qed
%\end{proof}
\subsection{Proof of Proposition~\ref{prop:relaxation}}\label{proofofproprelaxation}
@@ -469,12 +469,12 @@ the inner inequality follows from Lemma~\ref{lemma:monotonicity}.
\item the accuracy of the approximation $\hat{L}^*_{c,\alpha}$ is:
\begin{displaymath}
- A\defeq\frac{\varepsilon\delta b}{2^{n+1}(\delta + n^2B)}
+ \varepsilon' =\frac{\varepsilon\delta b}{2^{n+1}(\delta + n^2B)}
\end{displaymath}
Note that:
\begin{displaymath}
- \log\log A^{-1} = O\bigg(\log\log\frac{B}{\varepsilon\delta b} + \log n\bigg)
+ \log\log (\varepsilon')^{-1} = O\bigg(\log\log\frac{B}{\varepsilon\delta b} + \log n\bigg)
\end{displaymath}
Using Lemma~\ref{lemma:barrier} concludes the proof of the running time.\qed
\end{enumerate}
@@ -482,7 +482,7 @@ Using Lemma~\ref{lemma:barrier} concludes the proof of the running time.\qed
\section{Budget Feasible Reverse Auction Mechanisms}\label{app:budgetfeasible}
We review in this appendix the formal definition of a budget feasible reverse auction mechanisms, as introduced by \citeN{singer-mechanisms}. We depart from the definitions in \cite{singer-mechanisms} only in considering $\delta$-truthful, rather than truthful, mechanisms.
-Given a budget $B$ and a value function $V:2^{\mathcal{N}}\to\reals_+$, a \emph{mechanism} $\mathcal{M} = (S,p)$ comprises (a) an \emph{allocation function}\footnote{Note that $S$ would be more aptly termed as a \emph{selection} function, as this is a reverse auction, but we retain the term ``allocation'' to align with the familiar term from standard auctions.}
+Given a budget $B$ and a value function $V:2^{\mathcal{N}}\to\reals_+$, a \emph{mechanism} $\mathcal{M} = (S,p)$ comprises (a) an \emph{allocation function}
$S:\reals_+^n \to 2^\mathcal{N}$ and (b) a \emph{payment function}
$p:\reals_+^n\to \reals_+^n$.
Let $s_i(c) = \id_{i\in S(c)}$ be the binary indicator of $i\in S(c)$. We seek mechanisms that have the following properties \cite{singer-mechanisms}:
@@ -516,8 +516,48 @@ Formally, there must exist some $\alpha\geq 1$
\section{Proof of Theorem~\ref{thm:main}}\label{sec:proofofmainthm}
+\begin{algorithm}[!t]
+ \caption{Mechanism for \SEDP{}}\label{mechanism}
+ \begin{algorithmic}[1]
+ %\State $\mathcal{N} \gets \mathcal{N}\setminus\{i\in\mathcal{N} : c_i > B\}$
+ \Require{ $B\in \reals_+$,$c\in[0,B]^n$, $\delta\in (0,1]$, $\epsilon\in (0,1]$ }
+ \State $i^* \gets \argmax_{j\in\mathcal{N}}V(j)$
+ \State \label{relaxexec}$OPT'_{-i^*} \gets$ using Proposition~\ref{prop:monotonicity},
+ compute a $\varepsilon$-accurate, $\delta$-decreasing
+ approximation of $$\textstyle L^*_{c_{-i^*}}\defeq\max_{\lambda\in[0,1]^{n}} \{L(\lambda)
+ \mid \lambda_{i^*}=0,\sum_{i \in \mathcal{N}\setminus\{i^*\}}c_i\lambda_i\leq B\}$$
+ %\Statex
+ \State $C \gets \frac{8e-1 + \sqrt{64e^2-24e + 9}}{2(e-1)}$
+
+ \If{$OPT'_{-i^*} < C \cdot V(i^*)$} \label{c}
+ \State \textbf{return} $\{i^*\}$
+ \Else
+ \State $i \gets \argmax_{1\leq j\leq n}\frac{V(j)}{c_j}$
+ \State $S_G \gets \emptyset$
+ \While{$c_i\leq \frac{B}{2}\frac{V(S_G\cup\{i\})-V(S_G)}{V(S_G\cup\{i\})}$}
+ \State $S_G \gets S_G\cup\{i\}$
+ \State $i \gets \argmax_{j\in\mathcal{N}\setminus S_G}
+ \frac{V(S_G\cup\{j\})-V(S_G)}{c_j}$
+ \EndWhile
+ \State \textbf{return} $S_G$
+ \EndIf
+ \end{algorithmic}
+\end{algorithm}
+
+
+We now present the proof of Theorem~\ref{thm:main}.
+Our mechanism for \EDP{} is composed of
+(a) the allocation function presented in Algorithm~\ref{mechanism}, and
+(b) the payment function which pays each allocated agent $i$ her threshold
+payment as described in Myerson's Theorem. In the case where $\{i^*\}$ is the
+allocated set, her threshold payment is $B$. %(she would be have been dropped on
+%line 1 of Algorithm~\ref{mechanism} had she reported a higher cost).
+A closed-form formula for threshold payments when $S_G$ is the allocated set can
+be found in~\cite{singer-mechanisms}.
+
+
+We use the notation $OPT_{-i^*}$ to denote the optimal value of \EDP{} when the maximum value element $i^*$ is excluded. We also use $OPT'_{-i^*}$ to denote the approximation computed by the $\delta$-decreasing, $\epsilon$-accurate approximation of $L^*_{c_{-i^*}}$, as defined in Algorithm~\ref{mechanism}.
-We now present the proof of Theorem~\ref{thm:main}. We use the notation $OPT_{-i^*}$ to denote the optimal value of \EDP{} when the maximum value element $i^*$ is excluded. We also use $OPT'_{-i^*}$ the approximation computed by the $\delta$-decreasing, $\epsilon$-accurate approximation of $L^*_{c_{-i^*}}$, as defined in Algorithm~\ref{mechanism}.
The properties of $\delta$-truthfulness and
individual rationality follow from $\delta$-monotonicity and threshold
@@ -574,7 +614,7 @@ implies that the threshold payment of user $i$ is bounded by the above quantity.
%\end{displaymath}
Hence, the total payment is bounded by the telescopic sum:
\begin{displaymath}
- \sum_{i\in S_G} \frac{V(S_i\cup\{i\}) - V(S_i)}{V(S_G)} B = \frac{V(S_G)-V(\emptyset)}{V(S_G)} B=B\qed
+ \sum_{i\in S_G} \frac{V(S_i\cup\{i\}) - V(S_i)}{V(S_G)} B = \frac{V(S_G)-V(\emptyset)}{V(S_G)} B=B\qedhere
\end{displaymath}
\end{proof}
@@ -589,7 +629,6 @@ The complexity of the mechanism is given by the following lemma.
The value function $V$ in \eqref{modified} can be computed in time
$O(\text{poly}(n, d))$ and the mechanism only involves a linear
number of queries to the function $V$.
-
By Proposition~\ref{prop:monotonicity}, line 3 of Algorithm~\ref{mechanism}
can be computed in time
$O(\text{poly}(n, d, \log\log \frac{B}{b\varepsilon\delta}))$. Hence the allocation
@@ -626,26 +665,25 @@ OPT
\leq \frac{10e\!-\!3 + \sqrt{64e^2\!-\!24e\!+\!9}}{2(e\!-\!1)} V(S^*)\!
+ \! \varepsilon .
\end{equation}
-To see this, let $L^*_{-i^*}$ be the true maximum value of $L$ subject to
-$\lambda_{i^*}=0$, $\sum_{i\in \mathcal{N}\setminus{i^*}}c_i\leq B$. From line
-3 of Algorithm~\ref{mechanism}, we have
-$L^*_{-i^*}-\varepsilon\leq OPT_{-i^*}' \leq L^*_{-i^*}+\varepsilon$.
+To see this, let $L^*_{c_{-i^*}}$ be the true maximum value of $L$ subject to
+$\lambda_{c_{-i^*}}=0$, $\sum_{i\in \mathcal{N}\setminus{i^*}}c_i\leq B$. From line
+\ref{relaxexec} of Algorithm~\ref{mechanism}, we have
+$L^*_{c_{-i^*}}-\varepsilon\leq OPT_{-i^*}' \leq L^*_{c_{-i^*}}+\varepsilon$.
-If the condition on line 4 of the algorithm holds, then
+If the condition on line \ref{c} of the algorithm holds then, from the lower bound in Proposition~\ref{prop:relaxation},
\begin{displaymath}
- V(i^*) \geq \frac{1}{C}L^*_{-i^*}-\frac{\varepsilon}{C} \geq
+ V(i^*) \geq \frac{1}{C}L^*_{c_{-i^*}}-\frac{\varepsilon}{C} \geq
\frac{1}{C}OPT_{-i^*} -\frac{\varepsilon}{C}.
\end{displaymath}
-Indeed, $L^*_{-i^*}\geq OPT_{-i^*}$ as $L$ is a fractional relaxation of $V$. Also, $OPT \leq OPT_{-i^*} + V(i^*)$,
+Also, $OPT \leq OPT_{-i^*} + V(i^*)$,
hence,
\begin{equation}\label{eq:bound1}
OPT\leq (1+C)V(i^*) + \varepsilon.
\end{equation}
-
-If the condition does not hold, by observing that $L^*_{-i^*}\leq L^*_c$ and
-applying Proposition~\ref{prop:relaxation}, we get
+If the condition on line \ref{c} does not hold, by observing that $L^*_{c_{-i^*}}\leq L^*_c$ and
+the upper bound of Proposition~\ref{prop:relaxation}, we get
\begin{displaymath}
- V(i^*)\leq \frac{1}{C}L^*_{-i^*} + \frac{\varepsilon}{C}
+ V(i^*)\leq \frac{1}{C}L^*_{c_{-i^*}} + \frac{\varepsilon}{C}
\leq \frac{1}{C} \big(2 OPT + 2 V(i^*)\big) + \frac{\varepsilon}{C}.
\end{displaymath}
Applying Lemma~\ref{lemma:greedy-bound},
@@ -653,7 +691,7 @@ Applying Lemma~\ref{lemma:greedy-bound},
V(i^*) \leq \frac{1}{C}\left(\frac{2e}{e-1}\big(3 V(S_G)
+ 2 V(i^*)\big) + 2 V(i^*)\right) + \frac{\varepsilon}{C}.
\end{displaymath}
-Thus, if $C$ is such that $C(e-1) -6e +2 > 0$,
+Note that $C$ satifies $C(e-1) -6e +2 > 0$, hence
\begin{align*}
V(i^*) \leq \frac{6e}{C(e-1)- 6e + 2} V(S_G)
+ \frac{(e-1)\varepsilon}{C(e-1)- 6e + 2}.
@@ -664,18 +702,19 @@ Finally, using Lemma~\ref{lemma:greedy-bound} again, we get
\frac{3e}{e-1}\left( 1 + \frac{4e}{C (e-1) -6e +2}\right) V(S_G)
+ \frac{2e\varepsilon}{C(e-1)- 6e + 2}.
\end{equation}
-To minimize the coefficients of $V_{i^*}$ and $V(S_G)$ in \eqref{eq:bound1}
-and \eqref{eq:bound2} respectively, we wish to chose $C$ that minimizes
+Our choice of $C$, namely,
+\begin{equation}\label{eq:constant}
+ C = \frac{8e-1 + \sqrt{64e^2-24e + 9}}{2(e-1)},
+\end{equation}
+ is precisely to minimize the maximum among the coefficients of $V_{i^*}$ and $V(S_G)$ in \eqref{eq:bound1}
+and \eqref{eq:bound2}, respectively. Indeed, consider:
\begin{displaymath}
\max\left(1+C,\frac{3e}{e-1}\left( 1 + \frac{4e}{C (e-1) -6e +2}
\right)\right).
\end{displaymath}
This function has two minima, only one of those is such that $C(e-1) -6e
-+2 \geq 0$. This minimum is
-\begin{equation}\label{eq:constant}
- C = \frac{8e-1 + \sqrt{64e^2-24e + 9}}{2(e-1)}.
-\end{equation}
-For this minimum, $\frac{2e\varepsilon}{C^*(e-1)- 6e + 2}\leq \varepsilon.$
++2 \geq 0$. This minimum is precisely \eqref{eq:constant}.
+For this minimum, $\frac{2e\varepsilon}{C(e-1)- 6e + 2}\leq \varepsilon.$
Placing the expression of $C$ in \eqref{eq:bound1} and \eqref{eq:bound2}
gives the approximation ratio in \eqref{approxbound}, and concludes the proof
of Theorem~\ref{thm:main}.\hspace*{\stretch{1}}\qed